可视化神器Plotly绘制矩形树状图

大家好,我是Peter~

今天给大家带来的是一篇关于Plotly绘图的文章:如何使用Plotly来绘制矩形树状图

image

Plotly文章

目前Plotly的文章更新到第17篇,推荐几篇文章:

image

闲聊

为什么Peter一直坚持写Plotly的文章?国庆节前有位读者加了Peter的VX:

1、你的教程关于Plotly的对我帮助很大🦀

image

2、本科大三就开始卷了😭

image

3、山大学子,优秀👍

image

以前还有另一位Plotly的读者,也是看了Peter的文章:

所以大家一起好好学习,Peter也好好写文章,说不定哪天你看了就会受益~

什么是树图

树状图(tree diagram)是一种将层次结构式的构造性质,以图象方式表现出来的方法。主要是通过父子级的关系来表现的,比如:中国—广东—深圳,就是一个例子。中国和广东之间,广东和深圳之间都是这种关系的表现。

下面是网上找到的一份关于树图的层级结构的图形,很经典:

image

我们再看一幅现代的很有冲击力的树图:

这种图形叫缓冲垫树状结构图(Cushion Treemap),它使用纹理使每个矩形在中间看起来像垫子一样”凸起”,并且逐渐变细到边缘。这种视觉效果利用了人类将这种类型的阴影解释为凸起的表面的优势,从而可以更快地识别出不同的矩形

image

参考资源:

1、Plotly官网:https://plotly.com/python/treemaps/

2、矩形式树状结构图(Treemaps)-复杂层次结构的数据可视化:https://www.idesigntools.com/treemaps.html

导入库

本文中介绍的树图还是会使用 plotly_express 和 plotly.graph_objects 两种方法来绘制,下面还是先导入库:

import pandas as pd
import numpy as np

import plotly_express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots  # 画子图

基于plotly_express绘制

2.1 基础树状图

在绘制树图的时候是基于数据的列表形式

name = ["中国","福建", "广东","厦门","深圳", "珠海", "湖北", "湖南", "长沙", "陕西","衡阳","咸阳","东莞"]
parent = ["", "中国", "中国","福建", "广东", "广东", "中国", "中国", "湖南", "中国","湖南","陕西","广东"]


fig = px.treemap(
    names = name,
    parents = parent)
fig.update_traces(root_color="lightgrey")

fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))

fig.show()
image

2.2 基于DataFrame的树图

上面的数据是我们自定义的列表形式,一般如果在pandas中,数据会是DataFrame的格式,如何绘制树图呢?

在这里我们使用的plotly中自带的消费数据集:

image
fig = px.treemap(
    df,  # 传入数据
    path=[px.Constant("all"),"day","sex","time"],  # 重点:传递数据路径
    values="tip"  # 数值显示使用哪个字段
)

fig.update_traces(root_color="lightskyblue") 

fig.update_layout(margin=dict(t=30,l=20,r=25,b=30))   

fig.show()
image

还可以设置颜色参数:

fig = px.treemap(
    df,
    path=[px.Constant("all"),"day","sex","time"],  # 重点:传递数据路径
    values="tip",
    color="time"   # 指定颜色变化的参数
)

fig.update_traces(root_color="lightskyblue")

fig.update_layout(margin=dict(t=30,l=20,r=25,b=30))   

fig.show()
image

2.3 带有连续颜色变化的树图

在这里采用的是gdp数据集:

image
fig = px.treemap(
    df1,
    path=[px.Constant("world"),"continent","country"], # 路径
    values="pop",  # 值
    color="lifeExp",  # 颜色的取值
    hover_data=["iso_alpha"],  # 悬停数据
    color_continuous_scale="RdBu",  # 颜色变化的设置
    color_continuous_midpoint=np.average(df1["lifeExp"],
                                        weights=df1["pop"])
)

fig.update_layout(margin = dict(t=40, l=15, r=35, b=45))

fig.show()
image

2.4 基于离散颜色变化的树状图

采用的还是基于消费的数据集:

image

绘图代码如下:

fig = px.treemap(
    df,   # 传入数据
    path=[px.Constant("all"), 'sex', 'day', 'time'],   # 数据路径
    values='total_bill',   # 采用的值
    color='time',   # 颜色
    color_discrete_map={'(?)':'lightgrey',   # 离散型颜色设置
                        'Lunch':'gold', 
                        'Dinner':'darkblue'})

fig.update_layout(margin = dict(t=50, l=15, r=25, b=35))

fig.show()
image

3 基于go.Treemap绘制

3.1 基础树状图

 name = ["中国","福建", "广东","厦门","深圳", "珠海", "湖北", "湖南", "长沙", "陕西","衡阳","咸阳","东莞"]
parent = ["", "中国", "中国","福建", "广东", "广东", "中国", "中国", "湖南", "中国","湖南","陕西","广东"]


fig = go.Figure(go.Treemap(  # go方法实现
    labels = name,
    parents = parent,
    root_color = "lightgrey"
))

fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))

fig.show()
image

3.2 不同颜色的树图

多种方式来设置树状图的颜色

1、方式1

name = ["中国","福建", "广东","厦门","深圳", "珠海", "湖北", "湖南", "长沙", "陕西","衡阳","咸阳","东莞"]
parent = ["", "中国", "中国","福建", "广东", "广东", "中国", "中国", "湖南", "中国","湖南","陕西","广东"]
color = ["pink", "royalblue", "lightgray", "purple", "cyan", "lightgray", "lightblue", "lightgreen"]


fig = go.Figure(go.Treemap(  
    labels = name,
    parents = parent,
    marker_colors = color   # 方式1:marker_colors参数设置
))

fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))

fig.show()
image

方式2:

name = ["中国","福建", "广东","厦门","深圳", "珠海", "湖北", "湖南", "长沙", "陕西","衡阳","咸阳","东莞"]
parent = ["", "中国", "中国","福建", "广东", "广东", "中国", "中国", "湖南", "中国","湖南","陕西","广东"]

fig = go.Figure(go.Treemap(  
    labels = name,
    parents = parent,
))

fig.update_layout(
    margin = dict(t=50, l=25, r=25, b=25),
    # 方式2:通过 treemapcolorway 参数设置
    treemapcolorway = ["pink","blue","red","lightblue","purple","royalblue"])

fig.show()
image

方式3:

name = ["中国","福建", "广东","厦门","深圳", "珠海", "湖北", "湖南", "长沙", "陕西","衡阳","咸阳","东莞"]
parent = ["", "中国", "中国","福建", "广东", "广东", "中国", "中国", "湖南", "中国","湖南","陕西","广东"]
values = [0,10,20,30,44,55,60,70,88,96,127,150,180]


fig = go.Figure(go.Treemap(  
    labels = name,
    parents = parent,
    values = values,
    marker_colorscale = 'Blues'  # 方式3
))

fig.update_layout(
    margin = dict(t=20, l=25, r=25, b=25))

fig.show()
image

如果我们想控制所有的标签内容的大小是相同的,我们可以使用来uniformtext参数来进行控制。

在这里我们采用的是一份在线的CSV文件:

image
fig = go.Figure(go.Treemap(
    ids = df2.ids, 
    labels = df2.labels,  # 标签
    parents = df2.parents,  # 父级路径
    pathbar_textfont_size = 20,  # 路径的字体大小
    root_color = "lightblue"  # root下的颜色
))

fig.update_layout(uniformtext=dict(minsize=10,mode="hide"),
                  margin=dict(t=50,l=25,r=25,b=25))

fig.show()
image
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容