Akaike information criterion,AIC是什么?一个用来筛选模型的指标。AIC越小模型越好,通常选择AIC最小的模型。第一句话好记,第二句话就呵呵了,小编有时候就会迷惑AIC越大越好还是越小越好。所以,还是要知其所以然的。
在AIC之前,我们需要知道Kullback–Leibler information或 Kullback–Leiblerdistance。对于一批数据,假设存在一个真实的模型f,还有一组可供选择的模型g1、g2、g3…gi,而K-L 距离就是用模型 gi 去估计真实模型 f 过程中损失的信息。可见K-L 距离越小,用模型 gi 估计真实模型 f 损失的信息越少,相应的模型 gi 越好。
然后,问题来了。怎么计算每个模型 gi 和真实模型 f 的距离呢?因为我们不知道真实模型 f,所以没办法直接计算每个模型的K-L距离,但可以通过信息损失函数去估计K-L距离。日本统计学家Akaike发现log似然函数和K-L距离有一定关系,并在1974年提出Akaike information criterion,AIC。通常情况下,AIC定义为:AIC=2k-2ln(L),其中k是模型参数个数,L是似然函数。
-2ln(L)反映模型的拟合情况,当两个模型之间存在较大差异时,差异主要体现在似然函数项-2ln(L),当似然函数差异不显著时,模型参数的惩罚项2k则起作用,随着模型中参数个数增加,2k增大,AIC增大,从而参数个数少的模型是较好的选择。AIC不仅要提高模型拟合度,而且引入了惩罚项,使模型参数尽可能少,有助于降低过拟合的可能性。然后,选一个AIC最小的模型就可以了。
然而,咱们平常用的最多的SPSS软件却不直接给出AIC。不过不用担心,以线性回归为例,SPSS虽不给出AIC,但会给出残差平方和,即残差Residual对应的Sum of Squares。然后,AIC=nln(残差平方和/n) 2k。其中模型参数个数k包括截距项和残差项,其中残差项往往被忽略。
比如,针对n=21的数据,某线性模型纳入2个自变量x1和x2,k应为4。从SPSS给出的方差分析表,可知AIC=21ln(21.809/21) 24=8.7941。
除AIC之外,还有很多模型选择的指标,比如和AIC联系比较密切的BIC,我们会在以后的文章和大家讨论。
经常地,对一堆数据进行建模的时候,特别是分类和回归模型,我们有很多的变量可供使用,选择不同的变量组合可以得到不同的模型,例如我们有5个变量,2的5次方,我们将有32个变量组合,可以训练出32个模型。但是哪个模型更加的好呢?目前常用有如下方法:
AIC=-2 ln(L) + 2 k 中文名字:赤池信息量 akaike information criterion
BIC=-2 ln(L) + ln(n)*k 中文名字:贝叶斯信息量 bayesian information criterion
HQ=-2 ln(L) + ln(ln(n))*k hannan-quinn criterion
其中L是在该模型下的最大似然,n是数据数量,k是模型的变量个数。
注意这些规则只是刻画了用某个模型之后相对“真实模型”的信息损失【因为不知道真正的模型是什么样子,所以训练得到的所有模型都只是真实模型的一个近似模型】,所以用这些规则不能说明某个模型的精确度,即三个模型A, B, C,在通过这些规则计算后,我们知道B模型是三个模型中最好的,但是不能保证B这个模型就能够很好地刻画数据,因为很有可能这三个模型都是非常糟糕的,B只是烂苹果中的相对好的苹果而已。
这些规则理论上是比较漂亮的,但是实际在模型选择中应用起来还是有些困难的,例如上面我们说了5个变量就有32个变量组合,如果是10个变量呢?2的10次方,我们不可能对所有这些模型进行一一验证AIC, BIC,HQ规则来选择模型,工作量太大。
————————————————
版权声明:本文为CSDN博主「xianlingmao」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xianlingmao/article/details/7891277