【神经网络原理】神经网络结构 & 符号约定

本文将主要讲解全连接神经网络的基本结构,包括对神经元、网络的输入 & 输出,权重w & 偏置b,激活函数的理解与符号约定。主要参考Neural Networks and Deep Learning这本书,非常适合初学者入门。

一、神经元—神经网络的组成单元

神经元模型的符号约定:输入:\vec{x},权重(weight):\vec{w},偏置(bias):b,未激活值:z,激活输出值:a
神经元可用于解决部分二分类问题——当有一个类别未知的\vec{x}输入感知机,若输出值a = 1时,感知机被激活,代表x属于第一类;若输出值a = 0时,感知机未激活,则代表x属于第二类。而对于sigmoid神经元,若输出值a ≥ 0.5时,代表x属于第一类,否则为第二类。

二、sigmoid神经元的优势

不难看出,感知机可以轻松实现“与非”逻辑,而与非逻辑可以组合成其他任意的逻辑,但对于一些过于复杂的问题,我们难以写出其背后地逻辑结构。这时候神经网络就能大显身手:它可以自适应的学习规律,调节网络地权重和偏置等参数,我们只需要用大量的数据对其正确地训练,即可得到我们想要的效果!
那有一个很有意思的问题:相比于阶跃函数,为什么我们在神经网络中更愿意采用sigmoid函数作为激活函数呢?

首先,由于感知机的激活函数为阶跃函数(在0处突变),权重的一个小的变化就可能导致输出值的突变,而如果将激活函数替换为sigmoid函数,输出值的变化就能发生相应的小的变化,有利于网络学习;另外,由于采用二次代价函数作为损失函数时,利用BP算法求梯度值需要对冲激函数求导,sigmoid函数正好时连续可导的,而且导数很好求。

三、全连接神经网络结构

为了便于理解,先画一个三层的全连接神经网络示意图,激活函数都选用sigmoid函数。全连接神经网络指除输出层外,每一个神经元都与下一层中的各神经元相连接。网络的第一层为输入层,最后一层为输出层,中间的所有层统称为隐藏层。其中,输入层的神经元比较特殊,不含偏置b,也没有激活函数\sigma(·)

神经网络结构的符号约定w^l_ {kj}代表第l层的第k个神经元与第(l-1)层的第j个神经元连线上的权重;W^l代表第l层与第l-1层之间的所有权重w构成的权重矩阵。b^l_ {k}、z^l_ {k}、a^l_ {k}分别代表第l层的第k个神经元对应的偏置、未激活值、激活值;\vec{b}^l、\vec{z}^l、\vec{a}^l则分别代表第l层的所有偏置组成的列向量、所有未激活值组成的列向量以及所有激活值组成的列向量。

注意!w^l_ {kj}上角标数字l是连线右边的层的层数,而下角标数字kj是先写连线右边的层中神经元所在的位置k,再写连线左边的层中神经元所在的位置j,此顺序是为了使W·\vec{x}时无需转置,方便书写。

下面展示了一个手写体识别的三层全连接神经网络结构:

隐藏层的功能可以看作是各种特征检测器的组合:检测到相应特征时,相应的隐藏层神经元就会被激活,从而使输出层相应的神经元也被激活。

近期的更新计划是 1. 如何利用梯度下降法更新各层网络参数——权重与偏置,使损失函数的值尽可能小、2. 如何利用BP反向误差传播算法优化损失函数对各层网络参数梯度求解、3. 梯度下降算法的常见变种。后面也会更新一些BP网络、CNN网络源代码,欢迎关注,有不严谨之处请指正~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容