OKhttp源码的简单分析
源码分析基于okhttp4.1.0,代码全部为kotlin。
先看okhttp的基本使用
val okHttpClient = OkHttpClient()
val request = Request.Builder()
.url(address)
.build()
//异步
okHttpClient.newCall(request).enqueue(object : Callback {
override fun onFailure(call: Call, e: IOException) {
}
override fun onResponse(call: Call, response: Response) {
}
})
//同步
var response = okHttpClient.newCall(request).execute().body?.string()
发起请求的过程
不管是异步还是同步都是通过 OkHttpClient
对象来创建一个 call
来发起请求,OkHttpClient
是通过 Builder
模式来创建:
constructor() : this(Builder())
其中包含了 dispatcher
调度器、connectionPool
链接池、interceptors
过滤器等参数。
Call
是一个接口,代表着一次请求, newCall
内有调用了又创建了一个RealCall
,
/** Prepares the [request] to be executed at some point in the future. */
override fun newCall(request: Request): Call {
return RealCall.newRealCall(this, request, forWebSocket = false)
}
companion object {
fun newRealCall(
client: OkHttpClient,
originalRequest: Request,
forWebSocket: Boolean
): RealCall {
// Safely publish the Call instance to the EventListener.
return RealCall(client, originalRequest, forWebSocket).apply {
transmitter = Transmitter(client, this)
}
}
}
internal class RealCall private constructor(
val client: OkHttpClient,
/** The application's original request unadulterated by redirects or auth headers. */
val originalRequest: Request,
val forWebSocket: Boolean
) : Call
所以这里可以看到不管是异步还是同步都是通过 RealCall
来发起的请求,RealCall
通过 client
和Request
来创建。回到上面查看发起请求的方法,先看 execute
同步请求
//发起同步请求
override fun execute(): Response {
synchronized(this) {
//检查此请求是否已经执行过
check(!executed) { "Already Executed" }
executed = true
}
// 开启请求超时倒计时
transmitter.timeoutEnter()
// 开启请求的事件监听
transmitter.callStart()
try {
//将此请求加入到调度器
client.dispatcher.executed(this)
//获取请求结果
return getResponseWithInterceptorChain()
} finally {
//此次请求结束 从调度器中移除
client.dispatcher.finished(this)
}
}
getResponseWithInterceptorChain
方法内的具体请求流程暂时不看,只摸清发起请求的流程。查看调度器
/** Ready async calls in the order they'll be run. */
private val readyAsyncCalls = ArrayDeque<AsyncCall>()
/** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
private val runningAsyncCalls = ArrayDeque<AsyncCall>()
/** Running synchronous calls. Includes canceled calls that haven't finished yet. */
private val runningSyncCalls = ArrayDeque<RealCall>()
/** Used by `Call#execute` to signal it is in-flight. */
@Synchronized internal fun executed(call: RealCall) {
runningSyncCalls.add(call)
}
/** Used by `AsyncCall#run` to signal completion. */
internal fun finished(call: AsyncCall) {
call.callsPerHost().decrementAndGet()
finished(runningAsyncCalls, call)
}
在请求开始和请求结束后会将这个请求从runningSyncCalls
对列中加入和移除,调度器中有三个对列,分别是准备请求的异步请求readyAsyncCalls
,正在执行的异步请求runningAsyncCalls
和正在执行的同步请求runningSyncCalls
。
接下来看异步enqueue
请求
override fun enqueue(responseCallback: Callback) {
synchronized(this) {
check(!executed) { "Already Executed" }
executed = true
}
transmitter.callStart()
client.dispatcher.enqueue(AsyncCall(responseCallback))
}
在异步请求中,加入调度器的并不是 RealCall
,而是 AsyncCall
,AsyncCall
是 RealCall
的内部类。虽然叫Call但是发现其实并不是一个和 RealCall
一样实现了Call
接口的类,而是一个Runnable
。
internal inner class AsyncCall(
private val responseCallback: Callback
) : Runnable {
fun executeOn(executorService: ExecutorService) {
//代码省略
}
override fun run() {
//代码省略
}
}
回到上面查看调度器的enqueue
方法
internal fun enqueue(call: AsyncCall) {
synchronized(this) {
//加入对列
readyAsyncCalls.add(call)
// Mutate the AsyncCall so that it shares the AtomicInteger of an existing running call to
// the same host.
if (!call.get().forWebSocket) {
val existingCall = findExistingCallWithHost(call.host())
if (existingCall != null) call.reuseCallsPerHostFrom(existingCall)
}
}
promoteAndExecute()
}
在这段代码里面只讲call加入至对列,并没有发现发起请求的代码,继续往下看 promoteAndExecute
方法内的代码
/**
* Promotes eligible calls from [readyAsyncCalls] to [runningAsyncCalls] and runs them on the
* executor service. Must not be called with synchronization because executing calls can call
* into user code.
*
* @return true if the dispatcher is currently running calls.
*/
private fun promoteAndExecute(): Boolean {
assert(!Thread.holdsLock(this))
//需要执行的请求
val executableCalls = mutableListOf<AsyncCall>()
val isRunning: Boolean
synchronized(this) {
val i = readyAsyncCalls.iterator()
//遍历readyAsyncCalls对列
while (i.hasNext()) {
val asyncCall = i.next()
//判断runningAsyncCalls的异步请求数
if (runningAsyncCalls.size >= this.maxRequests) break // Max capacity.
if (asyncCall.callsPerHost().get() >= this.maxRequestsPerHost) continue // Host max capacity.
//如果runningAsyncCalls数小于最大请求
//把此请求从readyAsyncCalls移除并加入到runningAsyncCalls中
//同时加入到executableCalls
i.remove()
asyncCall.callsPerHost().incrementAndGet()
executableCalls.add(asyncCall)
runningAsyncCalls.add(asyncCall)
}
isRunning = runningCallsCount() > 0
}
//调用executableCalls内所有asyncCall的executeOn方法
for (i in 0 until executableCalls.size) {
val asyncCall = executableCalls[i]
asyncCall.executeOn(executorService)
}
return isRunning
}
在这里还是没有到发起请求,上一步请求加入至 readyAsyncCalls
对列,这一步从readyAsyncCalls
移至 runningAsyncCalls
然后执行 asyncCall.executeOn
,这里用到了 executorService
线程池。
@get:Synchronized
@get:JvmName("executorService") val executorService: ExecutorService
get() {
if (executorServiceOrNull == null) {
executorServiceOrNull = ThreadPoolExecutor(0, Int.MAX_VALUE, 60, TimeUnit.SECONDS,
SynchronousQueue(), threadFactory("OkHttp Dispatcher", false))
}
return executorServiceOrNull!!
}
继续往下看,回到AsyncCall
internal inner class AsyncCall(
private val responseCallback: Callback
) : Runnable {
/**
* 省略相关代码
*/
fun executeOn(executorService: ExecutorService) {
assert(!Thread.holdsLock(client.dispatcher))
var success = false
try {
//添加至线程池
executorService.execute(this)
success = true
} catch (e: RejectedExecutionException) {
val ioException = InterruptedIOException("executor rejected")
ioException.initCause(e)
transmitter.noMoreExchanges(ioException)
//请求失败回调
responseCallback.onFailure(this@RealCall, ioException)
} finally {
if (!success) {
//添加至线程池失败,从调度器的对列中移除此次请求
client.dispatcher.finished(this) // This call is no longer running!
}
}
}
override fun run() {
threadName("OkHttp ${redactedUrl()}") {
var signalledCallback = false
transmitter.timeoutEnter()
try {
//获取请求结果
val response = getResponseWithInterceptorChain()
signalledCallback = true
//请求成功回调
responseCallback.onResponse(this@RealCall, response)
} catch (e: IOException) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for ${toLoggableString()}", e)
} else {
//请求失败回调
responseCallback.onFailure(this@RealCall, e)
}
} finally {
// 请求结束 从调度器的对列中移除此次请求
client.dispatcher.finished(this)
}
}
}
}
前面提到过AsyncCall
实现了Runnable
接口,这里在executeOn
方法内会将自己加入到调度器传过来的线程池中,执行run
方法。这里的请求也和同步请求一样最终调用getResponseWithInterceptorChain
。
大致流程如下
拦截器链的调用
在OKHttp的网络请求过程主要依靠拦截器,使用责任链模式。接着上面的往下查看getResponseWithInterceptorChain
方法
@Throws(IOException::class)
fun getResponseWithInterceptorChain(): Response {
// Build a full stack of interceptors.
val interceptors = mutableListOf<Interceptor>()
//用户自定义拦截器
interceptors += client.interceptors
//重定向和重试拦截器
interceptors += RetryAndFollowUpInterceptor(client)
//请求参数拦截器
interceptors += BridgeInterceptor(client.cookieJar)
//缓存拦截器
interceptors += CacheInterceptor(client.cache)
//连接拦截器
interceptors += ConnectInterceptor
if (!forWebSocket) {
//用户自定义网络拦截器
interceptors += client.networkInterceptors
}
//请求拦截器
interceptors += CallServerInterceptor(forWebSocket)
//将所有拦截器封装为过滤器链
val chain = RealInterceptorChain(interceptors, transmitter, null, 0, originalRequest, this,
client.connectTimeoutMillis, client.readTimeoutMillis, client.writeTimeoutMillis)
var calledNoMoreExchanges = false
try {
//开启执行拦截器链
val response = chain.proceed(originalRequest)
if (transmitter.isCanceled) {
response.closeQuietly()
throw IOException("Canceled")
}
//最后拿到请求结果
return response
} catch (e: IOException) {
calledNoMoreExchanges = true
throw transmitter.noMoreExchanges(e) as Throwable
} finally {
if (!calledNoMoreExchanges) {
transmitter.noMoreExchanges(null)
}
}
在getResponseWithInterceptorChain
方法内会将自定义过滤器和系统的过滤器封装为一个RealInterceptorChain
过滤器链,然后调用proceed方法,在proceed方法内
@Throws(IOException::class)
fun proceed(request: Request, transmitter: Transmitter, exchange: Exchange?): Response {
if (index >= interceptors.size) throw AssertionError()
//为下一个过滤器构建一个过滤器链 index + 1 下标加一
val next = RealInterceptorChain(interceptors, transmitter, exchange,
index + 1, request, call, connectTimeout, readTimeout, writeTimeout)
val interceptor = interceptors[index]
//执行当前下标的过滤器
@Suppress("USELESS_ELVIS")
val response = interceptor.intercept(next) ?: throw NullPointerException(
"interceptor $interceptor returned null")
return response
}
在过滤器的intercept的方法里面
@Override
public Response intercept(Chain chain) throws IOException {
//省略相关逻辑 基本过滤器都是这个格式
Request request = chain.request();
//这里的chain的下标是下一个过滤器链的下标了
//调用proceed方法又会回到上代码 执行下一个过滤方法。
Response response = chain.proceed(request);
return response;
}
这个实现过程就是使用了责任链模式,关于责任链模式不过多的说了。往下走逐个分析拦截器
RetryAndFollowUpInterceptor
重定向拦截器,
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
var request = chain.request()
val realChain = chain as RealInterceptorChain
val transmitter = realChain.transmitter()
var followUpCount = 0
var priorResponse: Response? = null
//开启死循环
while (true) {
transmitter.prepareToConnect(request)
if (transmitter.isCanceled) {
throw IOException("Canceled")
}
var response: Response
var success = false
try {
//从拦截器链获取请求结果
response = realChain.proceed(request, transmitter, null)
success = true
} catch (e: RouteException) {
if (!recover(e.lastConnectException, transmitter, false, request)) {
throw e.firstConnectException
}
continue
} catch (e: IOException) {
val requestSendStarted = e !is ConnectionShutdownException
if (!recover(e, transmitter, requestSendStarted, request)) throw e
continue
} finally {
// The network call threw an exception. Release any resources.
if (!success) {
transmitter.exchangeDoneDueToException()
}
}
if (priorResponse != null) {
response = response.newBuilder()
.priorResponse(priorResponse.newBuilder()
.body(null)
.build())
.build()
}
val exchange = response.exchange
val route = exchange?.connection()?.route()
//对请求结果进行处理 判断是否需要重定向或者重试
//并且返回处理过的request
val followUp = followUpRequest(response, route)
if (followUp == null) {
if (exchange != null && exchange.isDuplex) {
transmitter.timeoutEarlyExit()
}
//返回结果 跳出循环
return response
}
val followUpBody = followUp.body
if (followUpBody != null && followUpBody.isOneShot()) {
//返回结果 跳出循环
return response
}
response.body?.closeQuietly()
if (transmitter.hasExchange()) {
exchange?.detachWithViolence()
}
if (++followUpCount > MAX_FOLLOW_UPS) {
throw ProtocolException("Too many follow-up requests: $followUpCount")
}
//重新赋值request 开启下一次循环
request = followUp
priorResponse = response
}
}
在这个拦截器中是一个死循环,从拦截器链中获取请求请求结果,通过方法followUpRequest
对结果进行处理,判断是否需要重定向或者重试,如果判断请求成功的话跳出循环返回结果,否则的话继续下一次循环。
BridgeInterceptor
拦截器
class BridgeInterceptor(private val cookieJar: CookieJar) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val userRequest = chain.request()
val requestBuilder = userRequest.newBuilder()
val body = userRequest.body
/* 添加请求参数 开始 */
if (body != null) {
val contentType = body.contentType()
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString())
}
val contentLength = body.contentLength()
if (contentLength != -1L) {
requestBuilder.header("Content-Length", contentLength.toString())
requestBuilder.removeHeader("Transfer-Encoding")
} else {
requestBuilder.header("Transfer-Encoding", "chunked")
requestBuilder.removeHeader("Content-Length")
}
}
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", userRequest.url.toHostHeader())
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive")
}
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
var transparentGzip = false
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true
requestBuilder.header("Accept-Encoding", "gzip")
}
val cookies = cookieJar.loadForRequest(userRequest.url)
if (cookies.isNotEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies))
}
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", userAgent)
}
/* 添加请求参数 开始 */
//从链内获取请求结果
val networkResponse = chain.proceed(requestBuilder.build())
cookieJar.receiveHeaders(userRequest.url, networkResponse.headers)
val responseBuilder = networkResponse.newBuilder()
.request(userRequest)
//判断结果是否压缩
if (transparentGzip &&
"gzip".equals(networkResponse.header("Content-Encoding"), ignoreCase = true) &&
networkResponse.promisesBody()) {
val responseBody = networkResponse.body
if (responseBody != null) {
val gzipSource = GzipSource(responseBody.source())
val strippedHeaders = networkResponse.headers.newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build()
responseBuilder.headers(strippedHeaders)
val contentType = networkResponse.header("Content-Type")
responseBuilder.body(RealResponseBody(contentType, -1L, gzipSource.buffer()))
}
}
return responseBuilder.build()
}
/** Returns a 'Cookie' HTTP request header with all cookies, like `a=b; c=d`. */
private fun cookieHeader(cookies: List<Cookie>): String = buildString {
cookies.forEachIndexed { index, cookie ->
if (index > 0) append("; ")
append(cookie.name).append('=').append(cookie.value)
}
}
}
这个拦截器内代码比较简单,在请求前添加请求头等参数,在请求完之后进行数据压缩
CacheInterceptor
拦截器
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
//从缓存中获取缓存的Response对象
val cacheCandidate = cache?.get(chain.request())
val now = System.currentTimeMillis()
//通过缓存的response对象和request来创建一个缓存策略对象
val strategy = CacheStrategy.Factory(now, chain.request(), cacheCandidate).compute()
//从缓存策略对象中拿出networkRequest和cacheResponse
// networkRequest为空说明不需要请求网络,cacheResponse为空说明没有缓存可用
val networkRequest = strategy.networkRequest
val cacheResponse = strategy.cacheResponse
cache?.trackResponse(strategy)
//获取的缓存不为空,但是缓存策略中获取的为空,说明此缓存不适用,
if (cacheCandidate != null && cacheResponse == null) {
// The cache candidate wasn't applicable. Close it.
cacheCandidate.body?.closeQuietly()
}
//networkRequest和cacheResponse都为空
//直接return返回code为HTTP_GATEWAY_TIMEOUT 504的response
if (networkRequest == null && cacheResponse == null) {
return Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(HTTP_GATEWAY_TIMEOUT)
.message("Unsatisfiable Request (only-if-cached)")
.body(EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build()
}
//networkRequest为空 cacheResponse不为空加载缓存
if (networkRequest == null) {
return cacheResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build()
}
//networkRequest不为空 cacheResponse为空加载网络请求
var networkResponse: Response? = null
try {
//网络请求
networkResponse = chain.proceed(networkRequest)
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
cacheCandidate.body?.closeQuietly()
}
}
// 原有缓存
if (cacheResponse != null) {
if (networkResponse?.code == HTTP_NOT_MODIFIED) {
//合并操作
val response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers, networkResponse.headers))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis)
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis)
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
networkResponse.body!!.close()
//更新缓存
cache!!.trackConditionalCacheHit()
cache.update(cacheResponse, response)
return response
} else {
cacheResponse.body?.closeQuietly()
}
}
val response = networkResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
//写入缓存
if (cache != null) {
if (response.promisesBody() && CacheStrategy.isCacheable(response, networkRequest)) {
// Offer this request to the cache.
val cacheRequest = cache.put(response)
return cacheWritingResponse(cacheRequest, response)
}
if (HttpMethod.invalidatesCache(networkRequest.method)) {
try {
cache.remove(networkRequest)
} catch (_: IOException) {
// The cache cannot be written.
}
}
}
return response
}
在缓存拦截器中,首先是从缓存中获取cache
获取缓存,
val cacheCandidate = cache?.get(chain.request())
//cache中的get方法
internal fun get(request: Request): Response? {
val key = key(request.url)
val snapshot: DiskLruCache.Snapshot = try {
cache[key] ?: return null
} catch (_: IOException) {
return null // Give up because the cache cannot be read.
}
//省略相关代码
return response
}
//key方法
@JvmStatic
fun key(url: HttpUrl): String = url.toString().encodeUtf8().md5().hex()
可以看到缓存是使用了DiskLruCache
,缓存的key是使用了请求的url生成的md5。
获取缓存之后,通过 request
和缓存 response
来创建一个缓存策略对象,关于缓存策略的实现不在这里分析。只关注请求的大致流程。接着调用 compute
方法判断本次请求是否有可用的缓存还是发起网络请求。拿到 strategy
内的 networkRequest
和 cacheResponse
。
-
networkRequest
为空代表不需要网络请求,cacheResponse
为空代表无可用缓存。 -
networkRequest
和cacheResponse
都为空返回504 -
networkRequest
为空,cacheResponse
不为空,返回缓存。 -
networkRequest
不为空,发起网络请求。
获取网络请求后,会更新缓存或是添加至缓存。这里只简单分析了流程,并没有分析缓存策略,在后面会单独写文章来分析缓存策略。
ConnectInterceptor
拦截器
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
val request = realChain.request()
val transmitter = realChain.transmitter()
// We need the network to satisfy this request. Possibly for validating a conditional GET.
val doExtensiveHealthChecks = request.method != "GET"
val exchange = transmitter.newExchange(chain, doExtensiveHealthChecks)
return realChain.proceed(request, transmitter, exchange)
}
这个拦截器代码很简单,只有一行重要代码 transmitter.newExchange
,主要任务是在链接池中开启一个新的链接,并建立与服务器的连接。关于连接池的代码在这里不过多分析,后面也会单独写文章分析。
CallServerInterceptor
请求拦截器
这个拦截器才是最终负责向服务器写入请求数据和读取响应结果。
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
val exchange = realChain.exchange()
val request = realChain.request()
val requestBody = request.body
val sentRequestMillis = System.currentTimeMillis()
//向服务器写入请求头
exchange.writeRequestHeaders(request)
var responseHeadersStarted = false
var responseBuilder: Response.Builder? = null
//判断是否有请求body
if (HttpMethod.permitsRequestBody(request.method) && requestBody != null) {
//头部添加了"100-continue" 只有拿到服务的结果再继续
if ("100-continue".equals(request.header("Expect"), ignoreCase = true)) {
exchange.flushRequest()
responseHeadersStarted = true
//读取请求头
exchange.responseHeadersStart()
responseBuilder = exchange.readResponseHeaders(true)
}
//向服务器写入请求body
if (responseBuilder == null) {
if (requestBody.isDuplex()) {
exchange.flushRequest()
val bufferedRequestBody = exchange.createRequestBody(request, true).buffer()
requestBody.writeTo(bufferedRequestBody)
} else {
val bufferedRequestBody = exchange.createRequestBody(request, false).buffer()
requestBody.writeTo(bufferedRequestBody)
bufferedRequestBody.close()
}
} else {
//没有请求body
exchange.noRequestBody()
if (!exchange.connection()!!.isMultiplexed) {
exchange.noNewExchangesOnConnection()
}
}
} else {
//没有请求body
exchange.noRequestBody()
}
if (requestBody == null || !requestBody.isDuplex()) {
exchange.finishRequest()
}
//如果之前没有读取过请求头 开始读取请求头
if (!responseHeadersStarted) {
exchange.responseHeadersStart()
}
if (responseBuilder == null) {
responseBuilder = exchange.readResponseHeaders(false)!!
}
//在这里开始构建response
var response = responseBuilder
.request(request)
.handshake(exchange.connection()!!.handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build()
var code = response.code
if (code == 100) {
// server sent a 100-continue even though we did not request one.
// try again to read the actual response
response = exchange.readResponseHeaders(false)!!
.request(request)
.handshake(exchange.connection()!!.handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build()
code = response.code
}
exchange.responseHeadersEnd(response)
//状态码等于101 或者当前连接是forWebSocket的时候 返回一个空的body
response = if (forWebSocket && code == 101) {
response.newBuilder()
.body(EMPTY_RESPONSE)
.build()
} else {
//读取服务器返回的body
response.newBuilder()
.body(exchange.openResponseBody(response))
.build()
}
if ("close".equals(response.request.header("Connection"), ignoreCase = true) ||
"close".equals(response.header("Connection"), ignoreCase = true)) {
exchange.noNewExchangesOnConnection()
}
if ((code == 204 || code == 205) && response.body?.contentLength() ?: -1L > 0L) {
throw ProtocolException(
"HTTP $code had non-zero Content-Length: ${response.body?.contentLength()}")
}
return response
}
这个拦截器主要完成了和服务器的交互,这里也只简单分析,深层相关在这里不做多分析。
根据上面的分析,拦截器部分基本分析完了。流程如下
关于缓存策略,连接池等其他部分篇幅有限,以后逐个分析。
个人学习笔记,如有不对感谢大佬们指出。