HBASE应用场景

1、用户画像

比如大型的视频网站,电商平台产生的用户点击行为、浏览行为等等存储在HBase中为后续的智能推荐做数据支撑。

2、消息/订单存储

这个场景主要应用在电商平台,因为HBase提供了一个低延时、高并发的访问能力

3、对象存储

这里的对象存储实际是中等对象存储,是对HDFS存储文件的一个缓冲过度,因为如果我们大量的1M或2M这种小文件直接存储在HDFS上,会对NAMENODE造成元数据维护的压力,所以在HBase中可以很好的做过度合并后在持久化到HDFS上。HBase提供了中等对现象的存储能力,中等对象的大小范围在100k至10M之间。

4、时序数据

这里的时序数据是指随着时间而变化的数据,比如速度的展示,天气、温度、风速、车流量等等

5、Cube分析(KyLin)

通过KyLin将Hive或kafka中的数据,来构建Cube,这些Cube会存储在HBase中,以供其他的应用或其他的系统做实时查询或实时展示。

6、Feeds流

这个场景主要是应用在抖音、或其他小视频系统中,可以把Feeds流理解为一种内容聚合器,它可以帮助用户实时的获取最新的订阅源内容。

作者:机灵鬼鬼

链接:https://www.jianshu.com/p/18e2a7fd96ae

来源:简书

一、Hbase能做什么?

1. 海量数据存储:

上百亿行 x 上百万列

并没有列的限制

当表非常大的时候才能发挥这个作用, 最多百万行的话,没有必要放入hbase中

2. 准实时查询:

百亿行 x 百万列,在百毫秒以内

二、Hbase在实际场景中的应用:

1. 交通方面:

船舶GPS信息,全长江的船舶GPS信息,每天有1千万左右的数据存储。

2. 金融方面:

消费信息,贷款信息,信用卡还款信息等

3. 电商:

淘宝的交易信息等,物流信息,浏览信息等

4. 移动:

通话信息等,都是基于HBase的存储。

Hbase的特点:

1. 容量大:

传统关系型数据库,单表不会超过五百万,超过要做分表分库,不会超过30列

Hbase单表可以有百亿行、百万列,数据矩阵横向和纵向两个维度所支持的数据量级都非常具有弹性

2. 面向列:

面向列的存储和权限控制,并支持独立检索,可以动态增加列,即,可单独对列进行各方面的操作

列式存储,其数据在表中是按照某列存储的,这样在查询只需要少数几个字段的时候,能大大减少读取的数量

3. 多版本:

Hbase的每一个列的数据存储有多个Version,比如住址列,可能有多个变更,所以该列可以有多个version

4. 稀疏性:

为空的列并不占用存储空间,表可以设计的非常稀疏。

不必像关系型数据库那样需要预先知道所有列名然后再进行null填充

5. 拓展性:

底层依赖HDFS,当磁盘空间不足的时候,只需要动态增加datanode节点服务(机器)就可以了

6. 高可靠性:

WAL机制,保证数据写入的时候不会因为集群异常而导致写入数据丢失

Replication机制,保证了在集群出现严重的问题时候,数据不会发生丢失或者损坏

Hbase底层使用HDFS,本身也有备份。

7.高性能:

底层的LSM数据结构和RowKey有序排列等架构上的独特设计,使得Hbase写入性能非常高。

Region切分、主键索引、缓存机制使得Hbase在海量数据下具备一定的随机读取性能,该性能针对Rowkey的查询能够到达毫秒级别

LSM树,树形结构,最末端的子节点是以内存的方式进行存储的,内存中的小树会flush到磁盘中(当子节点达到一定阈值以后,会放到磁盘中,且存入的过程会进行实时merge成一个主节点,然后磁盘中的树定期会做merge操作,合并成一棵大树,以优化读性能。)

LSM树的介绍:https://www.cnblogs.com/yanghuahui/p/3483754.html

总结:

面向列,容量大,写入比mysql快但是读取没有,超过五百万条数据的话建议读写用Hbase

转:https://www.jianshu.com/p/fe63e9786146

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345