Redis

redis 简介

简单来说 redis 就是一个数据库,不过与传统数据库不同的是 redis 的数据是存在内存中的,所以存写速度非常快,因此 redis 被广泛应用于缓存方向。另外,redis 也经常用来做分布式锁。redis 提供了多种数据类型来支持不同的业务场景。除此之外,redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。

为什么要用 redis /为什么要用缓存

主要从“高性能”和“高并发”这两点来看待这个问题。

高性能:

假如用户第一次访问数据库中的某些数据。这个过程会比较慢,因为是从硬盘上读取的。将该用户访问的数据存在数缓存中,这样下一次再访问这些数据的时候就可以直接从缓存中获取了。操作缓存就是直接操作内存,所以速度相当快。如果数据库中的对应数据改变的之后,同步改变缓存中相应的数据即可!

image

高并发:

直接操作缓存能够承受的请求是远远大于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。

image

为什么要用 redis 而不用 map/guava 做缓存?

下面的内容来自 segmentfault 一位网友的提问,地址:https://segmentfault.com/q/1010000009106416

缓存分为本地缓存和分布式缓存。以 Java 为例,使用自带的 map 或者 guava 实现的是本地缓存,最主要的特点是轻量以及快速,生命周期随着 jvm 的销毁而结束,并且在多实例的情况下,每个实例都需要各自保存一份缓存,缓存不具有一致性。

使用 redis 或 memcached 之类的称为分布式缓存,在多实例的情况下,各实例共用一份缓存数据,缓存具有一致性。缺点是需要保持 redis 或 memcached服务的高可用,整个程序架构上较为复杂。

redis 和 memcached 的区别

对于 redis 和 memcached 我总结了下面四点。现在公司一般都是用 redis 来实现缓存,而且 redis 自身也越来越强大了!

  1. redis支持更丰富的数据类型(支持更复杂的应用场景):Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。memcache支持简单的数据类型,String。
  2. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而Memecache把数据全部存在内存之中。
  3. 集群模式:memcached没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 redis 目前是原生支持 cluster 模式的.
  4. Memcached是多线程,非阻塞IO复用的网络模型;Redis使用单线程的多路 IO 复用模型。

来自网络上的一张图,这里分享给大家!

redis 和 memcached 的区别

redis 常见数据结构以及使用场景分析

1. String

常用命令: set,get,decr,incr,mget 等。

String数据结构是简单的key-value类型,value其实不仅可以是String,也可以是数字。
常规key-value缓存应用;
常规计数:微博数,粉丝数等。

2.Hash

常用命令: hget,hset,hgetall 等。

Hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象,后续操作的时候,你可以直接仅仅修改这个对象中的某个字段的值。 比如我们可以Hash数据结构来存储用户信息,商品信息等等。比如下面我就用 hash 类型存放了我本人的一些信息:

key=JavaUser293847
value={
  “id”: 1,
  “name”: “SnailClimb”,
  “age”: 22,
  “location”: “Wuhan, Hubei”
}

3.List

常用命令: lpush,rpush,lpop,rpop,lrange等

list 就是链表,Redis list 的应用场景非常多,也是Redis最重要的数据结构之一,比如微博的关注列表,粉丝列表,消息列表等功能都可以用Redis的 list 结构来实现。

Redis list 的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销。

另外可以通过 lrange 命令,就是从某个元素开始读取多少个元素,可以基于 list 实现分页查询,这个很棒的一个功能,基于 redis 实现简单的高性能分页,可以做类似微博那种下拉不断分页的东西(一页一页的往下走),性能高。

4.Set

常用命令:
sadd,spop,smembers,sunion 等

set 对外提供的功能与list类似是一个列表的功能,特殊之处在于 set 是可以自动排重的。

当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。可以基于 set 轻易实现交集、并集、差集的操作。

比如:在微博应用中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis可以非常方便的实现如共同关注、共同粉丝、共同喜好等功能。这个过程也就是求交集的过程,具体命令如下:

sinterstore key1 key2 key3     将交集存在key1内

5.Sorted Set

常用命令: zadd,zrange,zrem,zcard等

和set相比,sorted set增加了一个权重参数score,使得集合中的元素能够按score进行有序排列。

举例: 在直播系统中,实时排行信息包含直播间在线用户列表,各种礼物排行榜,弹幕消息(可以理解为按消息维度的消息排行榜)等信息,适合使用 Redis 中的 SortedSet 结构进行存储。

redis 设置过期时间

Redis中有个设置时间过期的功能,即对存储在 redis 数据库中的值可以设置一个过期时间。作为一个缓存数据库,这是非常实用的。如我们一般项目中的 token 或者一些登录信息,尤其是短信验证码都是有时间限制的,按照传统的数据库处理方式,一般都是自己判断过期,这样无疑会严重影响项目性能。

我们 set key 的时候,都可以给一个 expire time,就是过期时间,通过过期时间我们可以指定这个 key 可以存活的时间。

如果假设你设置了一批 key 只能存活1个小时,那么接下来1小时后,redis是怎么对这批key进行删除的?

定期删除+惰性删除。

通过名字大概就能猜出这两个删除方式的意思了。

  • 定期删除:redis默认是每隔 100ms 就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。注意这里是随机抽取的。为什么要随机呢?你想一想假如 redis 存了几十万个 key ,每隔100ms就遍历所有的设置过期时间的 key 的话,就会给 CPU 带来很大的负载!
  • 惰性删除 :定期删除可能会导致很多过期 key 到了时间并没有被删除掉。所以就有了惰性删除。假如你的过期 key,靠定期删除没有被删除掉,还停留在内存里,除非你的系统去查一下那个 key,才会被redis给删除掉。这就是所谓的惰性删除,也是够懒的哈!

但是仅仅通过设置过期时间还是有问题的。我们想一下:如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期key堆积在内存里,导致redis内存块耗尽了。怎么解决这个问题呢?

redis 内存淘汰机制。

redis 内存淘汰机制(MySQL里有2000w数据,Redis中只存20w的数据,如何保证Redis中的数据都是热点数据?)

redis 配置文件 redis.conf 中有相关注释,我这里就不贴了,大家可以自行查阅或者通过这个网址查看: http://download.redis.io/redis-stable/redis.conf

redis 提供 6种数据淘汰策略:

  1. volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
  2. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
  3. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
  4. allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key(这个是最常用的).
  5. allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  6. no-eviction:禁止驱逐数据,也就是说当内存不足以容纳新写入数据时,新写入操作会报错。这个应该没人使用吧!

备注: 关于 redis 设置过期时间以及内存淘汰机制,我这里只是简单的总结一下,后面会专门写一篇文章来总结!

redis 持久化机制(怎么保证 redis 挂掉之后再重启数据可以进行恢复)

很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后回复数据),或者是为了防止系统故障而将数据备份到一个远程位置。

Redis不同于Memcached的很重一点就是,Redis支持持久化,而且支持两种不同的持久化操作。Redis的一种持久化方式叫快照(snapshotting,RDB),另一种方式是只追加文件(append-only file,AOF).这两种方法各有千秋,下面我会详细这两种持久化方法是什么,怎么用,如何选择适合自己的持久化方法。

快照(snapshotting)持久化(RDB)

Redis可以通过创建快照来获得存储在内存里面的数据在某个时间点上的副本。Redis创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis主从结构,主要用来提高Redis性能),还可以将快照留在原地以便重启服务器的时候使用。

快照持久化是Redis默认采用的持久化方式,在redis.conf配置文件中默认有此下配置:


save 900 1              #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。

save 300 10            #在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。

save 60 10000        #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。

AOF(append-only file)持久化

与快照持久化相比,AOF持久化 的实时性更好,因此已成为主流的持久化方案。默认情况下Redis没有开启AOF(append only file)方式的持久化,可以通过appendonly参数开启:

appendonly yes

开启AOF持久化后每执行一条会更改Redis中的数据的命令,Redis就会将该命令写入硬盘中的AOF文件。AOF文件的保存位置和RDB文件的位置相同,都是通过dir参数设置的,默认的文件名是appendonly.aof。

在Redis的配置文件中存在三种不同的 AOF 持久化方式,它们分别是:

appendfsync always     #每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度
appendfsync everysec  #每秒钟同步一次,显示地将多个写命令同步到硬盘
appendfsync no      #让操作系统决定何时进行同步

为了兼顾数据和写入性能,用户可以考虑 appendfsync everysec选项 ,让Redis每秒同步一次AOF文件,Redis性能几乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。

Redis 4.0 对于持久化机制的优化

Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通过配置项 aof-use-rdb-preamble 开启)。

如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB 和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分是压缩格式不再是 AOF 格式,可读性较差。

补充内容:AOF 重写

AOF重写可以产生一个新的AOF文件,这个新的AOF文件和原有的AOF文件所保存的数据库状态一样,但体积更小。

AOF重写是一个有歧义的名字,该功能是通过读取数据库中的键值对来实现的,程序无须对现有AOF文件进行任伺读入、分析或者写入操作。

在执行 BGREWRITEAOF 命令时,Redis 服务器会维护一个 AOF 重写缓冲区,该缓冲区会在子进程创建新AOF文件期间,记录服务器执行的所有写命令。当子进程完成创建新AOF文件的工作之后,服务器会将重写缓冲区中的所有内容追加到新AOF文件的末尾,使得新旧两个AOF文件所保存的数据库状态一致。最后,服务器用新的AOF文件替换旧的AOF文件,以此来完成AOF文件重写操作

更多内容可以查看我的这篇文章:

redis 事务

Redis 通过 MULTI、EXEC、WATCH 等命令来实现事务(transaction)功能。事务提供了一种将多个命令请求打包,然后一次性、按顺序地执行多个命令的机制,并且在事务执行期间,服务器不会中断事务而改去执行其他客户端的命令请求,它会将事务中的所有命令都执行完毕,然后才去处理其他客户端的命令请求。

在传统的关系式数据库中,常常用 ACID 性质来检验事务功能的可靠性和安全性。在 Redis 中,事务总是具有原子性(Atomicity)、一致性(Consistency)和隔离性(Isolation),并且当 Redis 运行在某种特定的持久化模式下时,事务也具有持久性(Durability)。

缓存雪崩和缓存穿透问题解决方案

缓存雪崩

简介:缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决办法(中华石杉老师在他的视频中提到过,视频地址在最后一个问题中有提到):

  • 事前:尽量保证整个 redis 集群的高可用性,发现机器宕机尽快补上。选择合适的内存淘汰策略。
  • 事中:本地ehcache缓存 + hystrix限流&降级,避免MySQL崩掉
  • 事后:利用 redis 持久化机制保存的数据尽快恢复缓存
image

缓存穿透

简介:一般是黑客故意去请求缓存中不存在的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决办法: 有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。另外也有一个更为简单粗暴的方法(我们采用的就是这种),如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。

参考:

如何解决 Redis 的并发竞争 Key 问题

所谓 Redis 的并发竞争 Key 的问题也就是多个系统同时对一个 key 进行操作,但是最后执行的顺序和我们期望的顺序不同,这样也就导致了结果的不同!

推荐一种方案:分布式锁(zookeeper 和 redis 都可以实现分布式锁)。(如果不存在 Redis 的并发竞争 Key 问题,不要使用分布式锁,这样会影响性能)

基于zookeeper临时有序节点可以实现的分布式锁。大致思想为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。完成业务流程后,删除对应的子节点释放锁。

在实践中,当然是从以可靠性为主。所以首推Zookeeper。

参考:

如何保证缓存与数据库双写时的数据一致性?

你只要用缓存,就可能会涉及到缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性问题?

一般来说,就是如果你的系统不是严格要求缓存+数据库必须一致性的话,缓存可以稍微的跟数据库偶尔有不一致的情况,最好不要做这个方案,读请求和写请求串行化,串到一个内存队列里去,这样就可以保证一定不会出现不一致的情况

串行化之后,就会导致系统的吞吐量会大幅度的降低,用比正常情况下多几倍的机器去支撑线上的一个请求。

参考:

非常感谢《redis实战》真本书,本文大多内容也参考了书中的内容。非常推荐大家看一下《redis实战》这本书,感觉书中的很多理论性东西还是很不错的。

为什么本文的名字要加上春夏秋冬又一春,哈哈 ,这是一部韩国的电影,我感觉电影不错,所以就用在文章名字上了,没有什么特别的含义,然后下面的有些配图也是电影相关镜头。

春夏秋冬又一春

很多时候我们需要持久化数据也就是将内存中的数据写入到硬盘里面,大部分原因是为了之后重用数据(比如重启机器、机器故障之后回复数据),或者是为了防止系统故障而将数据备份到一个远程位置。

Redis不同于Memcached的很重一点就是,Redis支持持久化,而且支持两种不同的持久化操作。Redis的一种持久化方式叫快照(snapshotting,RDB),另一种方式是只追加文件(append-only file,AOF).这两种方法各有千秋,下面我会详细这两种持久化方法是什么,怎么用,如何选择适合自己的持久化方法。

快照(snapshotting)持久化

Redis可以通过创建快照来获得存储在内存里面的数据在某个时间点上的副本。Redis创建快照之后,可以对快照进行备份,可以将快照复制到其他服务器从而创建具有相同数据的服务器副本(Redis主从结构,主要用来提高Redis性能),还可以将快照留在原地以便重启服务器的时候使用。

春夏秋冬又一春

快照持久化是Redis默认采用的持久化方式,在redis.conf配置文件中默认有此下配置:


save 900 1              #在900秒(15分钟)之后,如果至少有1个key发生变化,Redis就会自动触发BGSAVE命令创建快照。

save 300 10            #在300秒(5分钟)之后,如果至少有10个key发生变化,Redis就会自动触发BGSAVE命令创建快照。

save 60 10000        #在60秒(1分钟)之后,如果至少有10000个key发生变化,Redis就会自动触发BGSAVE命令创建快照。

根据配置,快照将被写入dbfilename选项指定的文件里面,并存储在dir选项指定的路径上面。如果在新的快照文件创建完毕之前,Redis、系统或者硬件这三者中的任意一个崩溃了,那么Redis将丢失最近一次创建快照写入的所有数据。

举个例子:假设Redis的上一个快照是2:35开始创建的,并且已经创建成功。下午3:06时,Redis又开始创建新的快照,并且在下午3:08快照创建完毕之前,有35个键进行了更新。如果在下午3:06到3:08期间,系统发生了崩溃,导致Redis无法完成新快照的创建工作,那么Redis将丢失下午2:35之后写入的所有数据。另一方面,如果系统恰好在新的快照文件创建完毕之后崩溃,那么Redis将丢失35个键的更新数据。

创建快照的办法有如下几种:

  • BGSAVE命令: 客户端向Redis发送 BGSAVE命令 来创建一个快照。对于支持BGSAVE命令的平台来说(基本上所有平台支持,除了Windows平台),Redis会调用fork来创建一个子进程,然后子进程负责将快照写入硬盘,而父进程则继续处理命令请求。
  • SAVE命令: 客户端还可以向Redis发送 SAVE命令 来创建一个快照,接到SAVE命令的Redis服务器在快照创建完毕之前不会再响应任何其他命令。SAVE命令不常用,我们通常只会在没有足够内存去执行BGSAVE命令的情况下,又或者即使等待持久化操作执行完毕也无所谓的情况下,才会使用这个命令。
  • save选项: 如果用户设置了save选项(一般会默认设置),比如 save 60 10000,那么从Redis最近一次创建快照之后开始算起,当“60秒之内有10000次写入”这个条件被满足时,Redis就会自动触发BGSAVE命令。
  • SHUTDOWN命令: 当Redis通过SHUTDOWN命令接收到关闭服务器的请求时,或者接收到标准TERM信号时,会执行一个SAVE命令,阻塞所有客户端,不再执行客户端发送的任何命令,并在SAVE命令执行完毕之后关闭服务器。
  • 一个Redis服务器连接到另一个Redis服务器: 当一个Redis服务器连接到另一个Redis服务器,并向对方发送SYNC命令来开始一次复制操作的时候,如果主服务器目前没有执行BGSAVE操作,或者主服务器并非刚刚执行完BGSAVE操作,那么主服务器就会执行BGSAVE命令

如果系统真的发生崩溃,用户将丢失最近一次生成快照之后更改的所有数据。因此,快照持久化只适用于即使丢失一部分数据也不会造成一些大问题的应用程序。不能接受这个缺点的话,可以考虑AOF持久化。

AOF(append-only file)持久化

与快照持久化相比,AOF持久化 的实时性更好,因此已成为主流的持久化方案。默认情况下Redis没有开启AOF(append only file)方式的持久化,可以通过appendonly参数开启:

appendonly yes

开启AOF持久化后每执行一条会更改Redis中的数据的命令,Redis就会将该命令写入硬盘中的AOF文件。AOF文件的保存位置和RDB文件的位置相同,都是通过dir参数设置的,默认的文件名是appendonly.aof。

春夏秋冬又一春

在Redis的配置文件中存在三种同步方式,它们分别是:


appendfsync always     #每次有数据修改发生时都会写入AOF文件,这样会严重降低Redis的速度
appendfsync everysec  #每秒钟同步一次,显示地将多个写命令同步到硬盘
appendfsync no      #让操作系统决定何时进行同步

appendfsync always 可以实现将数据丢失减到最少,不过这种方式需要对硬盘进行大量的写入而且每次只写入一个命令,十分影响Redis的速度。另外使用固态硬盘的用户谨慎使用appendfsync always选项,因为这会明显降低固态硬盘的使用寿命。

为了兼顾数据和写入性能,用户可以考虑 appendfsync everysec选项 ,让Redis每秒同步一次AOF文件,Redis性能几乎没受到任何影响。而且这样即使出现系统崩溃,用户最多只会丢失一秒之内产生的数据。当硬盘忙于执行写入操作的时候,Redis还会优雅的放慢自己的速度以便适应硬盘的最大写入速度。

appendfsync no 选项一般不推荐,这种方案会使Redis丢失不定量的数据而且如果用户的硬盘处理写入操作的速度不够的话,那么当缓冲区被等待写入的数据填满时,Redis的写入操作将被阻塞,这会导致Redis的请求速度变慢。

虽然AOF持久化非常灵活地提供了多种不同的选项来满足不同应用程序对数据安全的不同要求,但AOF持久化也有缺陷——AOF文件的体积太大。

重写/压缩AOF

AOF虽然在某个角度可以将数据丢失降低到最小而且对性能影响也很小,但是极端的情况下,体积不断增大的AOF文件很可能会用完硬盘空间。另外,如果AOF体积过大,那么还原操作执行时间就可能会非常长。

为了解决AOF体积过大的问题,用户可以向Redis发送 BGREWRITEAOF命令 ,这个命令会通过移除AOF文件中的冗余命令来重写(rewrite)AOF文件来减小AOF文件的体积。BGREWRITEAOF命令和BGSAVE创建快照原理十分相似,所以AOF文件重写也需要用到子进程,这样会导致性能问题和内存占用问题,和快照持久化一样。更糟糕的是,如果不加以控制的话,AOF文件的体积可能会比快照文件大好几倍。

文件重写流程:

文件重写流程

和快照持久化可以通过设置save选项来自动执行BGSAVE一样,AOF持久化也可以通过设置

auto-aof-rewrite-percentage

选项和

auto-aof-rewrite-min-size

选项自动执行BGREWRITEAOF命令。举例:假设用户对Redis设置了如下配置选项并且启用了AOF持久化。那么当AOF文件体积大于64mb,并且AOF的体积比上一次重写之后的体积大了至少一倍(100%)的时候,Redis将执行BGREWRITEAOF命令。

auto-aof-rewrite-percentage 100  
auto-aof-rewrite-min-size 64mb

无论是AOF持久化还是快照持久化,将数据持久化到硬盘上都是非常有必要的,但除了进行持久化外,用户还必须对持久化得到的文件进行备份(最好是备份到不同的地方),这样才能尽量避免数据丢失事故发生。如果条件允许的话,最好能将快照文件和重新重写的AOF文件备份到不同的服务器上面。

随着负载量的上升,或者数据的完整性变得 越来越重要时,用户可能需要使用到复制特性。

Redis 4.0 对于持久化机制的优化

Redis 4.0 开始支持 RDB 和 AOF 的混合持久化(默认关闭,可以通过配置项 aof-use-rdb-preamble 开启)。

如果把混合持久化打开,AOF 重写的时候就直接把 RDB 的内容写到 AOF 文件开头。这样做的好处是可以结合 RDB 和 AOF 的优点, 快速加载同时避免丢失过多的数据。当然缺点也是有的, AOF 里面的 RDB 部分就是压缩格式不再是 AOF 格式,可读性较差。

参考:

《Redis实战》

深入学习Redis(2):持久化
这篇文章主要是对 Redis 官方网站刊登的 Distributed locks with Redis 部分内容的总结和翻译。

什么是 RedLock

Redis 官方站这篇文章提出了一种权威的基于 Redis 实现分布式锁的方式名叫 Redlock,此种方式比原先的单节点的方法更安全。它可以保证以下特性:

  1. 安全特性:互斥访问,即永远只有一个 client 能拿到锁
  2. 避免死锁:最终 client 都可能拿到锁,不会出现死锁的情况,即使原本锁住某资源的 client crash 了或者出现了网络分区
  3. 容错性:只要大部分 Redis 节点存活就可以正常提供服务

怎么在单节点上实现分布式锁

SET resource_name my_random_value NX PX 30000

主要依靠上述命令,该命令仅当 Key 不存在时(NX保证)set 值,并且设置过期时间 3000ms (PX保证),值 my_random_value 必须是所有 client 和所有锁请求发生期间唯一的,释放锁的逻辑是:

if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end

上述实现可以避免释放另一个client创建的锁,如果只有 del 命令的话,那么如果 client1 拿到 lock1 之后因为某些操作阻塞了很长时间,此时 Redis 端 lock1 已经过期了并且已经被重新分配给了 client2,那么 client1 此时再去释放这把锁就会造成 client2 原本获取到的锁被 client1 无故释放了,但现在为每个 client 分配一个 unique 的 string 值可以避免这个问题。至于如何去生成这个 unique string,方法很多随意选择一种就行了。

Redlock 算法

算法很易懂,起 5 个 master 节点,分布在不同的机房尽量保证可用性。为了获得锁,client 会进行如下操作:

  1. 得到当前的时间,微妙单位
  2. 尝试顺序地在 5 个实例上申请锁,当然需要使用相同的 key 和 random value,这里一个 client 需要合理设置与 master 节点沟通的 timeout 大小,避免长时间和一个 fail 了的节点浪费时间
  3. 当 client 在大于等于 3 个 master 上成功申请到锁的时候,且它会计算申请锁消耗了多少时间,这部分消耗的时间采用获得锁的当下时间减去第一步获得的时间戳得到,如果锁的持续时长(lock validity time)比流逝的时间多的话,那么锁就真正获取到了。
  4. 如果锁申请到了,那么锁真正的 lock validity time 应该是 origin(lock validity time) - 申请锁期间流逝的时间
  5. 如果 client 申请锁失败了,那么它就会在少部分申请成功锁的 master 节点上执行释放锁的操作,重置状态

失败重试

如果一个 client 申请锁失败了,那么它需要稍等一会在重试避免多个 client 同时申请锁的情况,最好的情况是一个 client 需要几乎同时向 5 个 master 发起锁申请。另外就是如果 client 申请锁失败了它需要尽快在它曾经申请到锁的 master 上执行 unlock 操作,便于其他 client 获得这把锁,避免这些锁过期造成的时间浪费,当然如果这时候网络分区使得 client 无法联系上这些 master,那么这种浪费就是不得不付出的代价了。

放锁

放锁操作很简单,就是依次释放所有节点上的锁就行了

性能、崩溃恢复和 fsync

如果我们的节点没有持久化机制,client 从 5 个 master 中的 3 个处获得了锁,然后其中一个重启了,这是注意 整个环境中又出现了 3 个 master 可供另一个 client 申请同一把锁! 违反了互斥性。如果我们开启了 AOF 持久化那么情况会稍微好转一些,因为 Redis 的过期机制是语义层面实现的,所以在 server 挂了的时候时间依旧在流逝,重启之后锁状态不会受到污染。但是考虑断电之后呢,AOF部分命令没来得及刷回磁盘直接丢失了,除非我们配置刷回策略为 fsnyc = always,但这会损伤性能。解决这个问题的方法是,当一个节点重启之后,我们规定在 max TTL 期间它是不可用的,这样它就不会干扰原本已经申请到的锁,等到它 crash 前的那部分锁都过期了,环境不存在历史锁了,那么再把这个节点加进来正常工作。
本文是对 Martin Kleppmann 的文章 How to do distributed locking 部分内容的翻译和总结,上次写 Redlock 的原因就是看到了 Martin 的这篇文章,写得很好,特此翻译和总结。感兴趣的同学可以翻看原文,相信会收获良多。

开篇作者认为现在 Redis 逐渐被使用到数据管理领域,这个领域需要更强的数据一致性和耐久性,这使得他感到担心,因为这不是 Redis 最初设计的初衷(事实上这也是很多业界程序员的误区,越来越把 Redis 当成数据库在使用),其中基于 Redis 的分布式锁就是令人担心的其一。

Martin 指出首先你要明确你为什么使用分布式锁,为了性能还是正确性?为了帮你区分这二者,在这把锁 fail 了的时候你可以询问自己以下问题:

  1. 要性能的: 拥有这把锁使得你不会重复劳动(例如一个 job 做了两次),如果这把锁 fail 了,两个节点同时做了这个 Job,那么这个 Job 增加了你的成本。
  2. 要正确性的: 拥有锁可以防止并发操作污染你的系统或者数据,如果这把锁 fail 了两个节点同时操作了一份数据,结果可能是数据不一致、数据丢失、file 冲突等,会导致严重的后果。

上述二者都是需求锁的正确场景,但是你必须清楚自己是因为什么原因需要分布式锁。

如果你只是为了性能,那没必要用 Redlock,它成本高且复杂,你只用一个 Redis 实例也够了,最多加个从防止主挂了。当然,你使用单节点的 Redis 那么断电或者一些情况下,你会丢失锁,但是你的目的只是加速性能且断电这种事情不会经常发生,这并不是什么大问题。并且如果你使用了单节点 Redis,那么很显然你这个应用需要的锁粒度是很模糊粗糙的,也不会是什么重要的服务。

那么是否 Redlock 对于要求正确性的场景就合适呢?Martin 列举了若干场景证明 Redlock 这种算法是不可靠的。

用锁保护资源

这节里 Martin 先将 Redlock 放在了一边而是仅讨论总体上一个分布式锁是怎么工作的。在分布式环境下,锁比 mutex 这类复杂,因为涉及到不同节点、网络通信并且他们随时可能无征兆的 fail 。
Martin 假设了一个场景,一个 client 要修改一个文件,它先申请得到锁,然后修改文件写回,放锁。另一个 client 再申请锁 ... 代码流程如下:

// THIS CODE IS BROKEN
function writeData(filename, data) {
    var lock = lockService.acquireLock(filename);
    if (!lock) {
        throw 'Failed to acquire lock';
    }

    try {
        var file = storage.readFile(filename);
        var updated = updateContents(file, data);
        storage.writeFile(filename, updated);
    } finally {
        lock.release();
    }
}

可惜即使你的锁服务非常完美,上述代码还是可能跪,下面的流程图会告诉你为什么:

image

上述图中,得到锁的 client1 在持有锁的期间 pause 了一段时间,例如 GC 停顿。锁有过期时间(一般叫租约,为了防止某个 client 崩溃之后一直占有锁),但是如果 GC 停顿太长超过了锁租约时间,此时锁已经被另一个 client2 所得到,原先的 client1 还没有感知到锁过期,那么奇怪的结果就会发生,曾经 HBase 就发生过这种 Bug。即使你在 client1 写回之前检查一下锁是否过期也无助于解决这个问题,因为 GC 可能在任何时候发生,即使是你非常不便的时候(在最后的检查与写操作期间)。
如果你认为自己的程序不会有长时间的 GC 停顿,还有其他原因会导致你的进程 pause。例如进程可能读取尚未进入内存的数据,所以它得到一个 page fault 并且等待 page 被加载进缓存;还有可能你依赖于网络服务;或者其他进程占用 CPU;或者其他人意外发生 SIGSTOP 等。

... .... 这里 Martin 又增加了一节列举各种进程 pause 的例子,为了证明上面的代码是不安全的,无论你的锁服务多完美。

使用 Fencing (栅栏)使得锁变安全

修复问题的方法也很简单:你需要在每次写操作时加入一个 fencing token。这个场景下,fencing token 可以是一个递增的数字(lock service 可以做到),每次有 client 申请锁就递增一次:

image

client1 申请锁同时拿到 token33,然后它进入长时间的停顿锁也过期了。client2 得到锁和 token34 写入数据,紧接着 client1 活过来之后尝试写入数据,自身 token33 比 34 小因此写入操作被拒绝。注意这需要存储层来检查 token,但这并不难实现。如果你使用 Zookeeper 作为 lock service 的话那么你可以使用 zxid 作为递增数字。
但是对于 Redlock 你要知道,没什么生成 fencing token 的方式,并且怎么修改 Redlock 算法使其能产生 fencing token 呢?好像并不那么显而易见。因为产生 token 需要单调递增,除非在单节点 Redis 上完成但是这又没有高可靠性,你好像需要引进一致性协议来让 Redlock 产生可靠的 fencing token。

使用时间来解决一致性

Redlock 无法产生 fencing token 早该成为在需求正确性的场景下弃用它的理由,但还有一些值得讨论的地方。

学术界有个说法,算法对时间不做假设:因为进程可能pause一段时间、数据包可能因为网络延迟延后到达、时钟可能根本就是错的。而可靠的算法依旧要在上述假设下做正确的事情。

对于 failure detector 来说,timeout 只能作为猜测某个节点 fail 的依据,因为网络延迟、本地时钟不正确等其他原因的限制。考虑到 Redis 使用 gettimeofday,而不是单调的时钟,会受到系统时间的影响,可能会突然前进或者后退一段时间,这会导致一个 key 更快或更慢地过期。

可见,Redlock 依赖于许多时间假设,它假设所有 Redis 节点都能对同一个 Key 在其过期前持有差不多的时间、跟过期时间相比网络延迟很小、跟过期时间相比进程 pause 很短。

用不可靠的时间打破 Redlock

这节 Martin 举了个因为时间问题,Redlock 不可靠的例子。

  1. client1 从 ABC 三个节点处申请到锁,DE由于网络原因请求没有到达
  2. C节点的时钟往前推了,导致 lock 过期
  3. client2 在CDE处获得了锁,AB由于网络原因请求未到达
  4. 此时 client1 和 client2 都获得了锁

在 Redlock 官方文档中也提到了这个情况,不过是C崩溃的时候,Redlock 官方本身也是知道 Redlock 算法不是完全可靠的,官方为了解决这种问题建议使用延时启动,相关内容可以看之前的这篇文章。但是 Martin 这里分析得更加全面,指出延时启动不也是依赖于时钟的正确性的么?

接下来 Martin 又列举了进程 Pause 时而不是时钟不可靠时会发生的问题:

  1. client1 从 ABCDE 处获得了锁
  2. 当获得锁的 response 还没到达 client1 时 client1 进入 GC 停顿
  3. 停顿期间锁已经过期了
  4. client2 在 ABCDE 处获得了锁
  5. client1 GC 完成收到了获得锁的 response,此时两个 client 又拿到了同一把锁

同时长时间的网络延迟也有可能导致同样的问题。

Redlock 的同步性假设

这些例子说明了,仅有在你假设了一个同步性系统模型的基础上,Redlock 才能正常工作,也就是系统能满足以下属性:

  1. 网络延时边界,即假设数据包一定能在某个最大延时之内到达
  2. 进程停顿边界,即进程停顿一定在某个最大时间之内
  3. 时钟错误边界,即不会从一个坏的 NTP 服务器处取得时间

结论

Martin 认为 Redlock 实在不是一个好的选择,对于需求性能的分布式锁应用它太重了且成本高;对于需求正确性的应用来说它不够安全。因为它对高危的时钟或者说其他上述列举的情况进行了不可靠的假设,如果你的应用只需要高性能的分布式锁不要求多高的正确性,那么单节点 Redis 够了;如果你的应用想要保住正确性,那么不建议 Redlock,建议使用一个合适的一致性协调系统,例如 Zookeeper,且保证存在 fencing token。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343