R可视化:基础图形可视化(一)

基础图形可视化

数据分析的图形可视化是了解数据分布、波动和相关性等属性必不可少的手段。不同的图形类型对数据属性的表征各不相同,通常具体问题使用具体的可视化图形。R语言在可视化方面具有极大的优势,因其本身就是统计学家为了研究统计问题开发的编程语言,因此极力推荐使用R语言可视化数据。

图形类型及其使用意义

散点图

散点图是由x值和y值确定的点散乱分布在坐标轴上,一是可以用来展示数据的分布和聚合情况,二是可通过分布情况得到x和y之间的趋势结论。多用于回归分析,发现自变量和因变量的变化趋势,进而选择合适的函数对数据点进行拟合。

library(ggplot2)
library(dplyr)

dat <- %>% mutate(cyl = factor(cyl)) 
ggplot(dat, aes(x = wt, y = mpg, shape = cyl, color = cyl)) + 
    geom_point(size = 3, alpha = 0.4) + 
    geom_smooth(method = lm, linetype = "dashed", 
        color = "darkred", fill = "blue") + 
    geom_text(aes(label = rownames(dat)), size = 4) + 
    theme_bw(base_size = 12) + 
    theme(plot.title = element_text(size = 10, color = "black", face = "bold", hjust = 0.5), 
          axis.title = element_text(size = 10, color = "black", face = "bold"), 
          axis.text = element_text(size = 9, color = "black"), 
          axis.ticks.length = unit(-0.05, "in"), 
          axis.text.y = element_text(margin = unit(c(0.3, 0.3, 
            0.3, 0.3), "cm"), size = 9), 
          axis.text.x = element_blank(), 
          text = element_text(size = 8, color = "black"), 
          strip.text = element_text(size = 9, color = "black", face = "bold"), 
          panel.grid = element_blank())

直方图

直方图是一种对数据分布情况进行可视化的图形,它是二维统计图表,对应两个坐标分别是统计样本以及该样本对应的某个属性如频率等度量。

library(ggplot2)

data <- data.frame(
  Conpany = c("Apple", "Google", "Facebook", "Amozon", "Tencent"), 
  Sale2013 = c(5000, 3500, 2300, 2100, 3100), 
  Sale2014 = c(5050, 3800, 2900, 2500, 3300), 
  Sale2015 = c(5050, 3800, 2900, 2500, 3300), 
  Sale2016 = c(5050, 3800, 2900, 2500, 3300))
mydata <- tidyr::gather(data, Year, Sale, -Conpany)
ggplot(mydata, aes(Conpany, Sale, fill = Year)) + 
    geom_bar(stat = "identity", position = "dodge") +
    guides(fill = guide_legend(title = NULL)) + 
    ggtitle("The Financial Performance of Five Giant") + 
    scale_fill_wsj("rgby", "") + 
    theme_wsj() + 
    theme(
      axis.ticks.length = unit(0.5, "cm"), 
      axis.title = element_blank()))
library(patternplot)

data <- read.csv(system.file("extdata", "monthlyexp.csv", 
        package = "patternplot"))
data <- data[which(data$City == "City 1"), ]
x <- factor(data$Type, c("Housing", "Food", "Childcare"))
y <- data$Monthly_Expenses
pattern.type <- c("hdashes", "blank", "crosshatch")
pattern.color <- c("black", "black", "black")
background.color <- c("white", "white", "white")
density <- c(20, 20, 10)

patternplot::patternbar(data, x, y, group = NULL, 
        ylab = "Monthly Expenses, Dollar", 
        pattern.type = pattern.type, 
        pattern.color = pattern.color,
        background.color = background.color, 
        pattern.line.size = 0.5, 
        frame.color = c("black", "black", "black"), density = density) + 
ggtitle("(A) Black and White with Patterns"))

箱线图

箱线图是一种显示一组数据分布情况的统计图,它形状像箱子因此被也被称为箱形图。它通过六个数据节点将一组数据从大到小排列(上极限到下极限),反应原始数据分布特征。意义在于发现关键数据如平均值、任何异常值、数据分布紧密度和偏分布等。

library(ggplot2)
library(dplyr)

pr <- unique(dat$Fruit)
grp.col <- c("#999999", "#E69F00", "#56B4E9")

dat %>% mutate(Fruit = factor(Fruit)) %>% 
    ggplot(aes(x = Fruit, y = Weight, color = Fruit)) + 
        stat_boxplot(geom = "errorbar", width = 0.15) + 
        geom_boxplot(aes(fill = Fruit), width = 0.4, outlier.colour = "black",                       outlier.shape = 21, outlier.size = 1) + 
        stat_summary(fun.y = mean, geom = "point", shape = 16,
                     size = 2, color = "black") +
        # 在顶部显示每组的数目
        stat_summary(fun.data = function(x) {
            return(data.frame(y = 0.98 * 120, label = length(x)))
            }, geom = "text", hjust = 0.5, color = "red", size = 6) + 
        stat_compare_means(comparisons = list(
            c(pr[1], pr[2]), c(pr[1], pr[3]), c(pr[2], pr[3])),
            label = "p.signif", method = "wilcox.test") + 
        labs(title = "Weight of Fruit", x = "Fruit", y = "Weight (kg)") +
        scale_color_manual(values = grp.col, labels = pr) +
        scale_fill_manual(values = grp.col, labels = pr) + 
        guides(color = F, fil = F) + 
        scale_y_continuous(sec.axis = dup_axis(
            label = NULL, name = NULL),
            breaks = seq(90, 108, 2), limits = c(90, 120)) + 
        theme_bw(base_size = 12) + 
        theme(plot.title = element_text(size = 10, color = "black", 
                                        face = "bold", hjust = 0.5),
              axis.title = element_text(size = 10, 
                                        color = "black", face = "bold"), 
              axis.text = element_text(size = 9, color = "black"),
              axis.ticks.length = unit(-0.05, "in"), 
              axis.text.y = element_text(margin = unit(c(0.3, 0.3, 
                                          0.3, 0.3), "cm"), size = 9),
              axis.text.x = element_text(margin = unit(c(0.3, 
                                          0.3, 0.3, 0.3), "cm")),
              text = element_text(size = 8, color = "black"),
              strip.text = element_text(size = 9, color = "black", face = "bold"),
              panel.grid = element_blank())

面积图

面积图是一种展示个体与整体的关系的统计图,更多用于时间序列变化的研究。

library(ggplot2)
library(dplyr)

dat %>% group_by(Fruit, Store) %>% 
summarize(mean_Weight = mean(Weight)) %>% 
        ggplot(aes(x = Store, group = Fruit)) + 
        geom_area(aes(y = mean_Weight, 
            fill = as.factor(Fruit)), position = "stack", linetype = "dashed") + 
        geom_hline(aes(yintercept = mean(mean_Weight)), color = "blue", 
            linetype = "dashed", size = 1) + 
        guides(fill = guide_legend(title = NULL)) + 
        theme_bw(base_size = 12) + 
        theme(plot.title = element_text(size = 10, 
                color = "black", face = "bold", hjust = 0.5), 
            axis.title = element_text(size = 10, 
                color = "black", face = "bold"), 
            axis.text = element_text(size = 9, color = "black"), 
            axis.ticks.length = unit(-0.05, "in"), 
            axis.text.y = element_text(margin = unit(c(0.3, 0.3, 
                0.3, 0.3), "cm"), size = 9), 
            axis.text.x = element_text(margin = unit(c(0.3, 
                0.3, 0.3, 0.3), "cm")), 
            text = element_text(size = 8, color = "black"), 
            strip.text = element_text(size = 9, 
                color = "black", face = "bold"), 
            panel.grid = element_blank())

热图

热图也是一种对数据分布情况可视化的统计图形,如下图表现得是数据差异性的具象化实例。一般用于样本聚类等可视化过程。在基因表达或者丰度表达差异研究中,热图既可以展现数据质量间的差异性,也可以用于聚类等。

library(ggplot2)

data <- as.data.frame(matrix(rnorm(9 * 10), 9, 10))
rownames(data) <- paste("Gene", 1:9, sep = "_")
colnames(data) <- paste("sample", 1:10, sep = "_")
data$ID <- rownames(data)
data_m <- tidyr::gather(data, sampleID, value, -ID)

ggplot(data_m, aes(x = sampleID, y = ID)) + 
    geom_tile(aes(fill = value)) + 
    scale_fill_gradient2("Expression", low = "green", high = "red", 
            mid = "black") + 
    xlab("samples") + 
    theme_classic() + 
    theme(axis.ticks = element_blank(), 
          axis.line = element_blank(), 
          panel.grid.major = element_blank(),
          legend.key = element_blank(), 
          axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1),
          legend.position = "top")

相关图

相关图是热图的一种特殊形式,展示的是样本间相关系数大小的热图。

library(corrplot)

corrplot(corr = cor(dat[1:7]), order = "AOE", type = "upper", tl.pos = "d")
corrplot(corr = cor(dat[1:7]), add = TRUE, type = "lower", method = "number", 
    order = "AOE", diag = FALSE, tl.pos = "n", cl.pos = "n")

折线图

折线图是反应数据分布趋势的可视化图形,其本质和堆积图或者说面积图有些相似。

library(ggplot2)
library(dplyr)

grp.col <- c("#999999", "#E69F00", "#56B4E9")
dat.cln <- sampling::strata(dat, stratanames = "Fruit", 
    size = rep(round(nrow(dat) * 0.1/3, -1), 3), method = "srswor")

dat %>% slice(dat.cln$ID_unit) %>% 
    mutate(Year = as.character(rep(1996:2015, times = 3))) %>% 
    mutate(Year = factor(as.character(Year))) %>% 
    ggplot(aes(x = Year, y = Weight, linetype = Fruit, colour = Fruit, 
            shape = Fruit, fill = Fruit)) + 
        geom_line(aes(group = Fruit)) + 
        geom_point() + 
        scale_linetype_manual(values = c(1:3)) + 
        scale_shape_manual(values = c(19, 21, 23)) +
        scale_color_manual(values = grp.col, 
            labels = pr) + 
        scale_fill_manual(values = grp.col, labels = pr) + 
        theme_bw() + 
        theme(plot.title = element_text(size = 10, 
                color = "black", face = "bold", hjust = 0.5),
              axis.title = element_text(size = 10, color = "black", face = "bold"), 
              axis.text = element_text(size = 9, color = "black"),
              axis.ticks.length = unit(-0.05, "in"), 
              axis.text.y = element_text(margin = unit(c(0.3, 0.3, 
                0.3, 0.3), "cm"), size = 9),
              axis.text.x = element_text(margin = unit(c(0.3, 
                0.3, 0.3, 0.3), "cm")),
              text = element_text(size = 8, color = "black"),
              strip.text = element_text(size = 9, color = "black", face = "bold"),                    panel.grid = element_blank())

韦恩图

韦恩图是一种展示不同分组之间集合重叠区域的可视化图。

library(VennDiagram)

A <- sample(LETTERS, 18, replace = FALSE)
B <- sample(LETTERS, 18, replace = FALSE)
C <- sample(LETTERS, 18, replace = FALSE)
D <- sample(LETTERS, 18, replace = FALSE)

venn.diagram(x = list(A = A, D = D, B = B, C = C),
     filename = "Group4.png", height = 450, width = 450, 
     resolution = 300, imagetype = "png", col = "transparent", 
     fill = c("cornflowerblue", "green", "yellow", "darkorchid1"),
     alpha = 0.5, cex = 0.45, cat.cex = 0.45)
library(ggplot2)
library(UpSetR)

movies <- read.csv(system.file("extdata", "movies.csv", 
                package = "UpSetR"), header = T, sep = ";")
mutations <- read.csv(system.file("extdata", "mutations.csv", 
                package = "UpSetR"), header = T, sep = ",")

another.plot <- function(data, x, y) {
  round_any_new <- function(x, accuracy, f = round) {
    f(x/accuracy) * accuracy
  }
  data$decades <- round_any_new(as.integer(unlist(data[y])), 10, ceiling)
  data <- data[which(data$decades >= 1970), ]
  myplot <- (ggplot(data, aes_string(x = x)) + 
               geom_density(aes(fill = factor(decades)), alpha = 0.4) + 
               theme_bw() + 
               theme(plot.margin = unit(c(0, 0, 0, 0), "cm"), 
               legend.key.size = unit(0.4, "cm")))
}

upset(movies, main.bar.color = "black", 
      mb.ratio = c(0.5, 0.5), 
      queries = list(list(query = intersects, params = list("Drama"),
        color = "red", active = F), 
                list(query = intersects, params = list("Action", "Drama"), active = T),
                list(query = intersects, params = list("Drama", "Comedy", "Action"),
                    color = "orange",active = T)), 
      attribute.plots = list(gridrows = 50, 
           plots = list(list(plot = histogram, x = "ReleaseDate", queries = F), 
                   list(plot = scatter_plot, x = "ReleaseDate", 
                        y = "AvgRating", queries = T), 
                   list(plot = another.plot,x = "AvgRating", y = "ReleaseDate",
                        queries = F)),
                    ncols = 3)))

火山图

火山图通过两个属性Fold changeP value反应两组数据的差异性。

library(ggplot2)

data <- read.table(choose.files(),header = TRUE)
data$color <- ifelse(data$padj<0.05 & abs(data$log2FoldChange)>= 1,
                     ifelse(data$log2FoldChange > 1,'red','blue'),'gray')
color <- c(red = "red",gray = "gray",blue = "blue")

ggplot(data, aes(log2FoldChange, -log10(padj), col = color)) +
  geom_point() +
  theme_bw() +
  scale_color_manual(values = color) +
  labs(x="log2 (fold change)",y="-log10 (q-value)") +
  geom_hline(yintercept = -log10(0.05), lty=4,col="grey",lwd=0.6) +
  geom_vline(xintercept = c(-1, 1), lty=4,col="grey",lwd=0.6) +
  theme(legend.position = "none",
        panel.grid=element_blank(),
        axis.title = element_text(size = 16),
        axis.text = element_text(size = 14))

饼图

饼图是用于刻画分组间如频率等属性的相对关系图。

library(patternplot)

data <- read.csv(system.file("extdata", "vegetables.csv", 
                             package = "patternplot"))
pattern.type <- c("hdashes", "vdashes", "bricks")
pattern.color <- c("red3", "green3", "white")
background.color <- c("dodgerblue", "lightpink", "orange")

patternpie(group = data$group, pct = data$pct, 
    label = data$label, pattern.type = pattern.type,
    pattern.color = pattern.color, 
    background.color = background.color, frame.color = "grey40", 
    pixel = 0.3, pattern.line.size = 0.3, frame.size = 1.5, 
    label.size = 5, label.distance = 1.35) + 
  ggtitle("(B) Colors with Patterns"))

密度曲线图

密度曲线图反应的是数据在不同区间的密度分布情况,和概率密度函数PDF曲线类似。

library(ggplot2)
library(plyr)

set.seed(1234)
df <- data.frame(
  sex=factor(rep(c("F", "M"), each=200)),
  weight=round(c(rnorm(200, mean=55, sd=5),
                 rnorm(200, mean=65, sd=5)))
)
mu <- ddply(df, "sex", summarise, grp.mean=mean(weight))

ggplot(df, aes(x=weight, fill=sex)) +
  geom_histogram(aes(y=..density..), alpha=0.5, 
                 position="identity") +
  geom_density(alpha=0.4) +
  geom_vline(data=mu, aes(xintercept=grp.mean, color=sex),
             linetype="dashed") + 
  scale_color_grey() + 
  theme_classic()+
  theme(legend.position="top")

参考

  1. 直方图定义
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345