简单粗暴,不多说,直接代码吧:(这个代码实在上篇博客的基础上:人脸检测——AFLW准备人脸)
先要生成AFLW_ann.txt。
import os
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import cv2
import numpy as np
def crop_for_cal(sn, xn, yn, n):
with open('AFLW_ann.txt','r') as f:
lines = f.readlines()
save_dir1 = 'data_prepare/cal_positive_'+str(n)+'_12'
save_dir2 = 'data_prepare/cal_positive_'+str(n)+'_24'
save_dir3 = 'data_prepare/cal_positive_'+str(n)+'_48'
if os.path.exists(save_dir1)==False:
os.makedirs(save_dir1)
if os.path.exists(save_dir2)==False:
os.makedirs(save_dir2)
if os.path.exists(save_dir3)==False:
os.makedirs(save_dir3)
for idx, line in enumerate(lines):
spl1 = line.strip().split(' ')
image_path = spl1[0]
x = int(spl1[1])
y = int(spl1[2])
w = int(spl1[3])
h = int(spl1[4])
x = int(x-xn*w/sn)
y = int(y-yn*h/sn)
w = int(w/sn)
h = int(h/sn)
# image = Image.open(image_path)
image = cv2.imread(image_path)
if image is None:
continue
if x<=0 and y<=0 and w<=0 and h<=0:
continue
box = (x, y, x+w, y+h)
# patch = image.crop(box)
patch = image[box[1]:box[3], box[0]:box[2], :]
if patch is None:
continue
if patch.shape[0]<10 and patch.shape[1]<10:
continue
#patch1 = patch.resize((12, 12))
#patch2 = patch.resize((24, 24))
#patch3 = patch.resize((48, 48))
patch1 = cv2.resize(patch, (12, 12))
patch2 = cv2.resize(patch, (24, 24))
patch3 = cv2.resize(patch, (48, 48))
spl2 = image_path.split('/')
image_name = spl2[-1]
save_path1 = save_dir1+'/'+str(idx)+image_name + '.jpg'
save_path2 = save_dir2+'/'+str(idx)+image_name + '.jpg'
save_path3 = save_dir3+'/'+str(idx)+image_name + '.jpg'
#patch1.save(save_path1, 'jpeg')
#patch2.save(save_path2, 'jpeg')
#patch3.save(save_path3, 'jpeg')
cv2.imwrite(save_path1, np.array(patch1))
cv2.imwrite(save_path2, np.array(patch2))
cv2.imwrite(save_path3, np.array(patch3))
if __name__ == '__main__':
s_set = (0.83, 0.91, 1.0, 1.10, 1.21)
x_set = (-0.17, 0, 0.17)
y_set = (-0.17, 0, 0.17)
n = 0
for x in x_set:
for y in y_set:
for s in s_set:
n = n + 1
crop_for_cal(s, x, y, n)