微信公众号:机器学习养成记
上篇文章介绍了XGBoost在R语言中的实现方法(XGBoost(二):R语言实现),本篇文章接着来介绍XGBoost在Python中的实现方法。
1、XGBoost库
Python中,可直接通过“pip install xgboost”安装XGBoost库,基分类器支持决策树和线性分类器。
2、XGBoost代码实现
本例中我们使用uci上的酒质量评价数据,该数据通过酸性、ph值、酒精度等11个维度对酒的品质进行评价,对酒的评分为0-10分。
相关库载入
除了xgboost,本例中我们还将用到pandas、sklearn和matplotlib方便数据的读入、处理和最后的图像绘制。
import xgboost
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn import metrics
from xgboost import plot_importance
from matplotlib import pyplot
数据加载
将数据导入Python,并对数据根据7:3的比例划分为训练集和测试集,并对label进行处理,超过6分为1,否则为0。
redwine = pd.read_csv('winequality-red.csv',sep = ';')
whitewine = pd.read_csv('winequality-white.csv',sep = ';')
wine = redwine.append(whitewine)
x = wine.iloc[:,0:11]
y = wine.iloc[:,11]
y[y<=6] = 0
y[y>6] =1
# test_size: 测试集大小
# random_state: 设置随机数种子,0或不填则每次划分结果不同
train_x,test_x,train_y,test_y = train_test_split(x,y,test_size=0.3, random_state=17)
数据预处理
将数据转化为xgb.DMatrix类型。
dtrain= xgboost.DMatrix(data = train_x, label = train_y)
dtest= xgboost.DMatrix(data = test_x, label = test_y)
模型训练
训练模型,并对特征进行重要性排序。
param = {'max_depth':6, 'eta':0.5, 'silent':0, 'objective':'binary:logistic' }
num_round = 2
xgb = xgboost.train(param,dtrain, num_round)
test_preds = xgb.predict(dtest)
test_predictions = [round(value) for value in test_preds]#变成0、1#显示特征重要性
plot_importance(xgb)#打印重要程度结果
pyplot.show()
测试集效果检验
计算准确率、召回率等指标,并绘制ROC曲线图。
test_accuracy = metrics.accuracy_score(test_y, test_predictions)#准确率
test_auc = metrics.roc_auc_score(test_y,test_preds)#auc
test_recall = metrics.recall_score(test_y,test_predictions)#召回率
test_f1 = metrics.f1_score(test_y,test_predictions)#f1
test_precision = metrics.precision_score(test_y,test_predictions)#精确率
print("Test Auc: %.2f%%"% (test_auc * 100.0))
print("Test Accuary: %.2f%%"% (test_accuracy * 100.0))
print("Test Recall: %.2f%%"% (test_recall * 100.0))
print("Test Precision: %.2f%%"% (test_precision * 100.0))
print("Test F1: %.2f%%"% (test_f1 * 100.0))
fpr,tpr,threshold = metrics.roc_curve(test_y,test_preds)
pyplot.plot(fpr, tpr, color='blue',lw=2, label='ROC curve (area = %.2f%%)'% (test_auc * 100.0))###假正率为横坐标,真正率为纵坐标做曲线
pyplot.legend(loc="lower right")
pyplot.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
pyplot.title('ROC curve')
#Test Auc: 81.99%
#Test Accuary: 81.44%
#Test Recall: 36.55%
#Test Precision: 56.25%
#Test F1: 44.31%
公众号后台回复“xgbPy”获得完整代码
微信公众号:机器学习养成记