Java 5种IO模型

看了很多的博客,让我感觉精神一振的还是这篇:
https://blog.csdn.net/historyasamirror/article/details/5778378

我们先来说一下我们在使用BIO socket编程时候调用socket.read()方法时整体的执行流程:

1.程序调用socket.read(),这个方法会调用一个native read()方法,所以最终是由 OS执行read
2.OS得到read指令,命令网卡读取数据。
3.网卡读取数据完成后,将数据传递给内核。
4.内核把读取的数据拷贝的用户空间。
5.程序解除阻塞,完成read函数。

其实阻塞就是程序获得了CPU的资源,但是它就在那里干等着什么也不干。说白了就是占着茅坑不拉屎

1. IO Model

Stevens在文章中一共比较了五种IO Model:

  • Blocking IO
  • Non-Blocking IO
  • IO multiplexing
  • Signal driven IO
  • Asynchronous IO
    其中Signal driven IO实际使用不多,我也没有仔细了解。

1.1 Blocking IO

Blocking IO是我们一开始学习Java都使用过的BIO编程方式,在jdk1.4之前, NIO没有出,Java IO编程只有这一个方式。它的调用过程:

image

我们开头举得例子就是这个图,socket.read()会调用native read(),而Java中的native方法会调用底层的dll,而dll是C/C++编写的,图中的recvfrom其实是C语言socket编程中的一个方法。所以其实我们在Java中调用socket.read()最后也会调用到图中的recvfrom方法。

解释一下图含义:
应用程序(也就是我们的代码)想要读取数据就会调用recvfrom,而recvfrom会通知OS来执行,OS就会判断数据报是否准备好(比如判断是否收到了一个完整的UDP报文,如果收到UDP报文不完整,那么就继续等待)。当数据包准备好了之后,OS就会将数据从内核空间拷贝到用户空间(因为我们的用户程序只能获取用户空间的内存,无法直接获取内核空间的内存)。拷贝完成之后socket,read()就会解除阻塞,并得到read的结果。

在BIO中我们称作的阻塞,也就是阻塞在2个地方:

  1. OS等待数据报准备好。
  2. 将数据从内核空间拷贝到用户空间。

在这2个时候,我们的BIO程序就是占着茅坑不拉屎,啥事情都不干

1.2 Non-Blocking IO

直接上图:


image

NIO就是采用这种方式,当我们new了一个socket后我们可以设置它是非阻塞的。比如:

// 初始化一个 serverSocketChannel
serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.bind(new InetSocketAddress(8000));
// 设置serverSocketChannel为非阻塞模式
// 即 accept()会立即得到返回
serverSocketChannel.configureBlocking(false);

上面的代码是设置ServerSocketChannel为非阻塞,SocketChannel也是可以设置。NIO中提供了集中Channel(没有举例完,可能还有其他的Channel):

  • ServerSocketChannel
  • SocketChannel
  • FileChannel
  • DatagramChannel
    只有FileChannel无法设置成非阻塞模式,其他Channel都可以设置为非阻塞模式。

从图中我们可以看到,当我设置非阻塞后,我们的socket.read()方法就会立即得到一个返回结果(成功 or 失败),我们可以根据返回结果执行不同的逻辑,比如在失败时,我们可以做一些其他的事情。但事实上这种方式也是低效的,因为我们不得不使用轮询方法区一直问OS:“我的数据好了没啊”。

BIO 不会在recvfrom也就是socket.read()时候阻塞,但是还是会在将数据从内核空间拷贝到用户空间阻塞。一定要注意这个地方,Non-Blocking还是会阻塞的

1.3 IO Multiplex

image

IO MultiplexIO多路复用,我通信工程专业,看到这个我就想到了信道复用技术:时分复用,频分复用,码分复用。我是这样理解IO多路复用:传统情况下client与server通信需要一个3个socket(client的socket,server监听client连接的socket,即serversocket,还有一个server中用来和client通信的socket),而在IO多路复用中,client与server通信需要的不是socket,而是3个channel,通过channel可以完成与socket同样的操作,channel的底层还是使用的socket进行通信,但是多个channel只对应一个socket(可能不只是一个,但是socket的数量一定少于channel数量),这样仅仅通过少量的socket就可以完成更多的连接,提高了client容量。

不同的操作系统有不同的实现:

  • Windows:selector
  • Linux:epoll
  • Mac:kqueue
    其中epoll,kqueue比selector更为高效,这是因为他们监听方式的不同。selector的监听是通过轮询FD_SETSIZE来问每一个socket:“你改变了吗?”,假若监听到时间,那么selector就会调用相应的时间处理器进行处理。但是epoll与kqueue不同,他们把socket与事件绑定在一起,当监听到socket变化时,立即可以调用相应的处理。

selector,epoll,kqueue都属于Reactor IO设计。关于 Reactor与Proactor,可以看:
IO 模式 Reactor与Proactor

1.4 Signal driven IO

image

1.5 Asynchronous IO

Asynchronous IO异步IO。

image

Asynchronous IO调用中是真正的无阻塞,其他IO model中多少会有点阻塞。程序发起read操作之后,立刻就可以开始去做其它的事。而在内核角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。


我们思考一下问题

Blocking IO 与Non-Blocking IO 区别?

阻塞或非阻塞只涉及程序和OS,Blocking IO 会一直block程序知道OS返回,而Non-Block IO在OS内核在准备数据包的情况下会立即得到返回。

Asynchronous IO 与 Synchronous IO?

根据POSIX定义同步与非同步:

A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
An asynchronous I/O operation does not cause the requesting process to be blocked;
我们可以理解为只要有block就是同步IO,完全没有block则是异步IO。所以我们之前所说的

  • Blocking IO
  • Non-Blocking IO
  • IO Multiplex

均为Synchronous IO,只有Asynchronous IO为异步IO。

Non-Blocking IO 不是会立即返回没有阻塞吗?

Non-Blocking IO在数据包准备时是非阻塞的,但是在将数据从内核空间拷贝的用户空间还是会阻塞。而Asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,由内核完成读写,完成读写操作后kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

2.各种IO对比

2.png

四种IO举例:

有A,B,C,D四个人在钓鱼:
A用的是最老式的鱼竿,所以呢,得一直守着,等到鱼上钩了再拉杆;
B的鱼竿有个功能,能够显示是否有鱼上钩,所以呢,B就和旁边的MM聊天,隔会再看看有没有鱼上钩,有的话就迅速拉杆;
C用的鱼竿和B差不多,但他想了一个好办法,就是同时放好几根鱼竿,然后守在旁边,一旦有显示说鱼上钩了,它就将对应的鱼竿拉起来;
D是个有钱人,干脆雇了一个人帮他钓鱼,一旦那个人把鱼钓上来了,就给D发个短信。

3. 参考博客

IO - 同步,异步,阻塞,非阻塞 (亡羊补牢篇)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343