在讨论M理论之前,让我们简单回顾之前的内容。20世纪80年代中期,第一次弦理论革命后,物理学家构造了5个不同的弦理论,它们包括:I型、杂化O型、杂化E型、IIA型、IIB型,而且在微扰论的近似框架下,这些理论显得各不相同。但近似方法只是在弦理论的耦合常数小于1时才适用,而且物理学家们在研究了每一个理论所有可能的耦合常数值下的情况时,小于1弱耦合和大于1的强耦合,但是传统的微扰法对任何一个理论的强耦合特征都不起作用。最近,物理学家们借助超对称性的力量学会了如何计算一个弦理论的某些强耦合性质。发现杂化O型弦的强耦合性质似乎与I型弦的弱耦合性质是完全相同的,反过来也是这样。而且另外两个弦理论也满足这样的情况。这是一个惊人的发现。
经过一系列的研究发现,直到1995年惠藤发表了关于11维的超引力的演说,标志着“第二次弦理论革命”到来,惠藤论证说,如果从IIA型弦出发,把它的耦合常数从远小于1增大到远大于1,那么我们所能分析的物理有一个低能的近似,那就是一个11维的超引力。简单讲,1995年惠藤证明了,11维宇宙的存在。那么11维的理论究竟是什么呢?在低能(比普朗克能量比)条件下,惠藤等人指出,人们忽略已久的11维超引力量子场论就是它的近似。但在高能量下,我们如何描述这个理论呢?这个问题至今还在研究中。不管11维理论是什么,惠藤暂时把它叫作:M理论。M理论是一种结合了5种超弦理论和11维空间的超引力理论的终极理论,也是弦理论的最新一次延伸,对弦理论具有革命性的影响。因此惠藤也被作者称之为可以和爱因斯坦并列的物理学家,被美国《生活》杂志评选为二战后排名第六的“最有影响力的人物”。
同弦论一样,M理论的关键概念是超对称性。所谓超对称性,是指玻色子和费米子之间的对称性。玻色子是以印度加尔各答大学物理学家玻色(S.N.Bose)的名字命名的;费米子是以建议实施曼哈顿工程的物理学家费米(E.Fermi)的名字命名的。玻色子具有整数自旋,而费米子具有半整数自旋。相对论性量子理论预言,粒子自旋与其统计性质之间存在某种联系,这一预言已在自然界中得到令人惊叹的证实。
在超对称物理中,所有粒子都有自己的超对称伙伴。它们有与原来粒子完全相同的量子数(色、电荷、重子数、轻子数等)。玻色子的超伙伴必定是费米子;费米子的超伙伴必定是玻色子。尽管尚未找到超对称伙伴存在的确切证据,但理论家仍坚信它的存在。他们认为,由于超对称是自发破缺的,超伙伴粒子的质量必定比原来粒子的大很多,所以才无法在现有的加速器中探测到它的存在。
局部超对称性,还提供将引力也纳入物理统一理论的新途径。爱因斯坦广义相对论,是根据广义时空坐标变换下的某些要求导出来的。在超对称时空坐标变换下,局部超对称性则预言存在“超引力”。在超引力理论中,引力相互作用由一种自旋为2的玻色子(引力子)来传递;而引力子的超伙伴,是自旋为3/2的费米子(引力微子),它传递一种短程的相互作用。
在M理论体系中,时间分为两种,一种是我们世俗意义上的时间(即现行宇宙对人类意义上的时间)。还有一种被定义为“虚时间”,虚时间没有所谓的开端和终结,而是一直存在的时间,是用于描述超弦的一条无矢坐标轴。
M理论认为能量在自身维度下不守恒,能量会在自身绮翘中逃逸到其他膜,而弦分为开弦和闭弦,引力子弦与另三种弦不同,是一个自旋为2的玻色子,理论中被定义为自由的闭弦,可以被传播到宇宙膜外的高维空间以及其它宇宙膜,故能量场在自身维度(现行宇宙空间)下逃逸了更多。
在M理论中存在无数平行的是膜,膜相互作用碰撞导致产生四种基本粒子,产生电磁波和物种,这就是宇宙大爆炸的原因。