爬虫基础_02——BeautifulSoup

今天主要是利用BeautifulSoup爬一下糗百 http://www.qiushibaike.com/
包括:作者,年龄,段子内容,好笑数,评论数
主要思想:利用BeautifulSoup获取网页中的数据,然后存到本地的csv
下面了解一下BeautifulSoup的用法
首先必须要导入 bs4 库
BeautifulSoup 的用法
下面是具体代码:

import requests
from bs4 import BeautifulSoup
import csv


user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36"
header = {'User-Agent': user_agent}


html = requests.get('http://www.qiushibaike.com', headers = header).content
soup = BeautifulSoup(html, 'lxml')
# 获取要爬取的部分
divs = soup.select('.article.block.untagged.mb15')

authors = soup.select('div > a > h2')


if soup.select('div.author.clearfix > div'):
    ages = soup.select('div.author.clearfix > div')
else:
    ages = '不知道'
contents = soup.select('a > div.content > span')
laughs = soup.select('div.stats > span > i')
comments = soup.select('div.stats > span > a > i')
#新建一个列表,把获取的数据存到这个列表;
a = []
for author, age, content, laugh, comment in zip(authors, ages, contents, laughs, comments):
    data = {
        'author': author.get_text(),

        'age': age.get_text(),
        'content': content.get_text(),
        'laugh': laugh.get_text(),
        'comment': comment.get_text()
    }
    a.append(data)
#把列表的数据存到本地的csv文件;
csv_name = ['author', 'age', 'content', 'laugh', 'comment']
with open('qiubai.csv', 'w', newline = '',encoding='utf-8')as csvfile:
    write = csv.DictWriter(csvfile, fieldnames = csv_name)
    write.writeheader()
    write.writerows(a)
    csvfile.close()

结果:

糗百 .png

小结:
1、利用BeautifulSoup爬取数据,感觉比之前的正则方便多了,其实后面还有更方便的方法,请跳到下一篇查看爬虫基础_03——xpath
2、这里存储数据是用的csv文件,但是如果数据太多的话,这个方法就有局限性了,后面还会介绍一下其他的存储方法;

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容