经典卷积神经网络LeNet5

Lenet5是Yann LeCun发明卷积神经网络,当时这个网络是用来做数字识别的,Yann LeCun用这个卷积神经网络将识别准确率提高到了99%,将其应用与数字识别,当时几乎垄断了美国的支票、邮票数字识别,造成了很大影响,目前Yann LeCun在Facebook担任AI首席科学家,带领着Facebook 的AI团队一路高歌

image.png

下面图片中左边开始依次是Yann LeCun、Bengio、Hinton以及华人学者吴恩达

image.png
import torch
import torch.nn as nn
from  torchvision  import datasets,transforms
import torch.optim as optim
import torch.nn.functional as F
这种方式下载数据太慢了,本人直接从官网下载
batch_size = 100
cifar_train = datasets.CIFAR10(root = 'CIFAR_10',train = True,transform = transforms.Compose([
      transforms.Resize((32,32)),
      transforms.ToTensor()]),download = True)
train_loader = torch.utils.data.DataLoader(cifar_train,train = True,batch_size=batch_size,shuffle=True)

cifar_test = datasets.CIFAR10(root = 'CIFAR_10',train = False,transform = transforms.Compose([
         transforms.Resize((32,32)),
         transforms.Totensor()]),download = True)
test_loader = torch.utils.data.DataLoader(cifar_test,train = False,batch_size = batch_size,shuffle = True)

官网下载数据集截图如下:


数据下载截图
import pickle
import numpy as plt
def load(filename):

    with open(filename, 'rb') as fo:

        data = pickle.load(fo, encoding='latin1')

    return data
fil = 'E:\Download\DigitalImage\cifar-10-batches-py\data_batch_1'
batch_1 = load(fil)
print(batch_1['data'].shape)
print(batch_1.keys())
(10000, 3072)
dict_keys(['batch_label', 'labels', 'data', 'filenames'])
#数据查看
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
a = batch_1['data']
imgs = a[5, :].reshape([3, 32, 32])
print(imgs)
img = np.stack((imgs[0, :, :], imgs[1, :, :], imgs[2, :, :]), 2)
r = imgs[0, :, :]
g = imgs[1, :, :]
b = imgs[2, :, :]
print(img)
#print(img.shape)
#pic = Image.merge('RGB',(r,g,b))
plt.imshow(r)
plt.axis('off')
plt.show()

[[[159 150 153 ...  91  74  76]
  [142 146 155 ... 127 122  86]
  [109  99 105 ... 137 163  93]
  ...
  [244 240 241 ... 156 179 200]
  [246 243 243 ... 162 178 192]
  [246 243 244 ... 166 173 182]]

 [[102  91  95 ...  71  63  58]
  [ 75  72  76 ... 105 111  69]
  [ 67  58  59 ... 112 132  72]
  ...
  [129 123 122 ...  42  59  73]
  [133 128 127 ...  44  56  65]
  [139 133 132 ...  47  51  57]]

 [[101  95  97 ...  56  55  55]
  [ 68  66  65 ...  71  93  61]
  [ 75  60  52 ...  80 105  71]
  ...
  [ 70  65  65 ...  15  26  36]
  [ 74  72  70 ...  14  22  27]
  [ 82  78  77 ...  14  17  19]]]
[[[159 102 101]
  [150  91  95]
  [153  95  97]
  ...
  [ 91  71  56]
  [ 74  63  55]
  [ 76  58  55]]

 [[142  75  68]
  [146  72  66]
  [155  76  65]
  ...
  [127 105  71]
  [122 111  93]
  [ 86  69  61]]

 [[109  67  75]
  [ 99  58  60]
  [105  59  52]
  ...
  [137 112  80]
  [163 132 105]
  [ 93  72  71]]

 ...

 [[244 129  70]
  [240 123  65]
  [241 122  65]
  ...
  [156  42  15]
  [179  59  26]
  [200  73  36]]

 [[246 133  74]
  [243 128  72]
  [243 127  70]
  ...
  [162  44  14]
  [178  56  22]
  [192  65  27]]

 [[246 139  82]
  [243 133  78]
  [244 132  77]
  ...
  [166  47  14]
  [173  51  17]
  [182  57  19]]]
output_3_1.png
import pickle
import numpy as plt
def load(filename):

    with open(filename, 'rb') as fo:

        data = pickle.load(fo, encoding='latin1')

    return data
fil = 'E:\Download\DigitalImage\cifar-10-batches-py\data_batch_1'
batch_1 = load(fil)
print(batch_1['data'].shape)
print(batch_1.keys())


(10000, 3072)
dict_keys(['batch_label', 'labels', 'data', 'filenames'])
'''
transform = transforms.Compose([transforms.ToTensor()])
batch1 = []
#batch1.extend([1])
print(type(batch1))
print(batch1)
batch1.extend(batch_1['data'])
batch1.extend(batch_1['labels'])
#batch1 = np.array(batch1)
print(batch1[0].shape)
batch_1 = transform(batch1)
print(batch_1)


      File "<ipython-input-7-daf1fc5163f1>", line 14
        print(1)
                
    ^
    SyntaxError: EOF while scanning triple-quoted string literal
    



​```python

import torch
import torch.nn as nn
from  torchvision  import datasets,transforms
import torch.optim as optim
import torch.nn.functional as F
import pickle
import numpy as plt
# 数据加载预处理
#def load(filename):

#    with open(filename, 'rb') as fo:

 #       data = pickle.load(fo, encoding='latin1')
def load(file):
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict
fil_1 = 'E:\Download\DigitalImage\cifar-10-batches-py\data_batch_1'
fil_2 = 'E:\Download\DigitalImage\cifar-10-batches-py\data_batch_2'
fil_3 = 'E:\Download\DigitalImage\cifar-10-batches-py\data_batch_3'
fil_4 = 'E:\Download\DigitalImage\cifar-10-batches-py\data_batch_4'
fil_5 = 'E:\Download\DigitalImage\cifar-10-batches-py\data_batch_5'
fil_6 = 'E:\Download\DigitalImage\cifar-10-batches-py\\test_batch_1'

path = [fil_1,fil_2,fil_3,fil_4,fil_5,fil_6]
train_data = []
test_data = []
for i in range(len(path)):
    if i != len(path)-1:
        datas = load(path[i])
        #print(datas.keys())
        a = datas[b'data'].reshape(10000,3,32,32)
       # c = torch.from_numpy(a)
       # print(type(a))
        #print(a.shape)
        train_data.append((torch.FloatTensor(a),torch.LongTensor(datas[b'labels'])))
        print()
    else:
        datas = load(path[i])
        test_data = [(torch.FloatTensor(datas[b'data'].reshape(10000,3,32,32)),torch.LongTensor(datas[b'labels']))]
#train_batch_1 = load(fil_1)
#train_batch_2 = load(fil_2)
#train_batch_3 = load(fil_3)
#train_batch_4 = load(fil_4)
#train_batch_5 = load(fil_5)
#test_batch  =  load(fil_6)
#data_1 = (batch_1['data'].reshape(10000,3,32,32),batch_1['labels'])
#print(data_1.shape)
#data_1 = torch.tensor(data_1)
#print(data_1)
for data,label in train_data:
    print(data.shape)
    print(type(data))
print(test_data)




​ ```
torch.Size([10000, 3, 32, 32])
<class 'torch.Tensor'>
torch.Size([10000, 3, 32, 32])
<class 'torch.Tensor'>
torch.Size([10000, 3, 32, 32])
<class 'torch.Tensor'>
torch.Size([10000, 3, 32, 32])
<class 'torch.Tensor'>
torch.Size([10000, 3, 32, 32])
<class 'torch.Tensor'>

    [(tensor([[[[158., 159., 165.,  ..., 137., 126., 116.],
              [152., 151., 159.,  ..., 136., 125., 119.],
              [151., 151., 158.,  ..., 139., 130., 120.],
              ...,
              [ 68.,  42.,  31.,  ...,  38.,  13.,  40.],
              [ 61.,  49.,  35.,  ...,  26.,  29.,  20.],
              [ 54.,  56.,  45.,  ...,  24.,  34.,  21.]],
    
             [[112., 111., 116.,  ...,  95.,  91.,  85.],
              [112., 110., 114.,  ...,  95.,  91.,  88.],
              [110., 109., 111.,  ...,  98.,  95.,  89.],
              ...,
              [124., 100.,  88.,  ...,  97.,  64.,  85.],
              [116., 102.,  85.,  ...,  82.,  82.,  64.],
              [107., 105.,  89.,  ...,  77.,  84.,  67.]],
    
             [[ 49.,  47.,  51.,  ...,  36.,  36.,  33.],
              [ 51.,  40.,  45.,  ...,  31.,  32.,  34.],
              [ 47.,  33.,  36.,  ...,  34.,  34.,  33.],
              ...,
              [177., 148., 137.,  ..., 146., 108., 127.],
              [168., 148., 132.,  ..., 130., 126., 107.],
              [160., 149., 132.,  ..., 124., 129., 110.]]],


​    
            [[[235., 231., 232.,  ..., 233., 233., 232.],
              [238., 235., 235.,  ..., 236., 236., 235.],
              [237., 234., 234.,  ..., 235., 235., 234.],
              ...,
              [ 87.,  43.,  19.,  ..., 169., 182., 188.],
              [ 82.,  46.,  36.,  ..., 174., 185., 187.],
              [ 85.,  62.,  58.,  ..., 168., 180., 186.]],
    
             [[235., 231., 232.,  ..., 233., 233., 232.],
              [238., 235., 235.,  ..., 236., 236., 235.],
              [237., 234., 234.,  ..., 235., 235., 234.],
              ...,
              [ 99.,  51.,  23.,  ..., 184., 197., 202.],
              [ 96.,  57.,  44.,  ..., 189., 200., 202.],
              [101.,  75.,  67.,  ..., 183., 195., 200.]],
    
             [[235., 231., 232.,  ..., 233., 233., 232.],
              [238., 235., 235.,  ..., 236., 236., 235.],
              [237., 234., 234.,  ..., 235., 235., 234.],
              ...,
              [ 89.,  37.,  11.,  ..., 179., 193., 201.],
              [ 82.,  36.,  22.,  ..., 183., 196., 200.],
              [ 83.,  48.,  38.,  ..., 178., 191., 199.]]],


​    
            [[[158., 158., 139.,  ..., 228., 237., 238.],
              [170., 172., 151.,  ..., 232., 246., 246.],
              [174., 176., 157.,  ..., 230., 250., 245.],
              ...,
              [ 31.,  30.,  26.,  ...,  37.,   9.,   4.],
              [ 23.,  27.,  25.,  ...,  19.,   4.,   5.],
              [ 28.,  30.,  32.,  ...,   5.,   4.,   7.]],
    
             [[190., 187., 166.,  ..., 231., 239., 241.],
              [200., 199., 176.,  ..., 232., 246., 247.],
              [201., 200., 179.,  ..., 229., 249., 244.],
              ...,
              [ 40.,  39.,  35.,  ...,  40.,  13.,   7.],
              [ 34.,  38.,  36.,  ...,  20.,   6.,   7.],
              [ 41.,  43.,  45.,  ...,   6.,   5.,   8.]],
    
             [[222., 218., 194.,  ..., 234., 243., 246.],
              [229., 226., 201.,  ..., 236., 250., 251.],
              [225., 222., 199.,  ..., 232., 251., 247.],
              ...,
              [ 45.,  44.,  40.,  ...,  46.,  14.,   5.],
              [ 39.,  43.,  41.,  ...,  24.,   3.,   3.],
              [ 47.,  50.,  52.,  ...,   8.,   3.,   7.]]],


​    
            ...,


​    
            [[[ 20.,  19.,  15.,  ...,  10.,  12.,  13.],
              [ 21.,  20.,  18.,  ...,  10.,  10.,  12.],
              [ 21.,  21.,  20.,  ...,  12.,  12.,  13.],
              ...,
              [ 33.,  34.,  34.,  ...,  28.,  29.,  23.],
              [ 33.,  34.,  34.,  ...,  27.,  27.,  25.],
              [ 31.,  32.,  33.,  ...,  24.,  26.,  25.]],
    
             [[ 15.,  14.,  14.,  ...,   9.,  11.,  12.],
              [ 16.,  16.,  17.,  ...,   9.,   9.,  11.],
              [ 16.,  17.,  18.,  ...,  11.,  11.,  12.],
              ...,
              [ 25.,  26.,  26.,  ...,  25.,  25.,  20.],
              [ 25.,  26.,  26.,  ...,  24.,  24.,  22.],
              [ 23.,  24.,  25.,  ...,  23.,  23.,  20.]],
    
             [[ 12.,  11.,  11.,  ...,   7.,   9.,  10.],
              [ 13.,  13.,  12.,  ...,   7.,   7.,   9.],
              [ 13.,  12.,  11.,  ...,   9.,   9.,  10.],
              ...,
              [ 13.,  15.,  15.,  ...,  52.,  58.,  42.],
              [ 14.,  15.,  15.,  ...,  52.,  56.,  47.],
              [ 12.,  13.,  14.,  ...,  50.,  53.,  47.]]],


​    
            [[[ 25.,  15.,  23.,  ...,  61.,  92.,  75.],
              [ 12.,  20.,  24.,  ..., 115., 149., 104.],
              [ 12.,  15.,  34.,  ..., 154., 157., 116.],
              ...,
              [100., 103., 104.,  ...,  97.,  98.,  91.],
              [103., 104., 107.,  ..., 101.,  99.,  92.],
              [ 95.,  95., 101.,  ...,  93.,  95.,  92.]],
    
             [[ 40.,  36.,  41.,  ...,  82., 113.,  89.],
              [ 25.,  37.,  36.,  ..., 134., 168., 117.],
              [ 25.,  29.,  40.,  ..., 172., 175., 129.],
              ...,
              [129., 132., 134.,  ..., 128., 126., 121.],
              [132., 131., 135.,  ..., 132., 127., 121.],
              [126., 123., 128.,  ..., 124., 123., 120.]],
    
             [[ 12.,   3.,  18.,  ...,  78., 112.,  92.],
              [  6.,   7.,  15.,  ..., 138., 177., 131.],
              [ 11.,   6.,  24.,  ..., 182., 192., 151.],
              ...,
              [ 81.,  84.,  86.,  ...,  84.,  84.,  79.],
              [ 83.,  83.,  87.,  ...,  87.,  84.,  79.],
              [ 78.,  76.,  81.,  ...,  80.,  81.,  80.]]],


​    
            [[[ 73.,  98.,  99.,  ..., 135., 135., 203.],
              [ 69.,  84.,  68.,  ...,  85.,  71., 120.],
              [ 69.,  90.,  62.,  ...,  74.,  53.,  62.],
              ...,
              [123., 132., 129.,  ..., 108.,  62.,  27.],
              [115., 123., 129.,  ..., 115.,  66.,  27.],
              [116., 121., 129.,  ..., 116.,  68.,  27.]],
    
             [[ 78., 103., 106.,  ..., 150., 149., 215.],
              [ 73.,  89.,  75.,  ...,  95.,  82., 133.],
              [ 73.,  95.,  71.,  ...,  81.,  62.,  74.],
              ...,
              [128., 132., 128.,  ..., 107.,  60.,  27.],
              [121., 124., 126.,  ..., 116.,  65.,  27.],
              [120., 122., 128.,  ..., 115.,  65.,  26.]],
    
             [[ 75., 113., 114.,  ..., 152., 154., 223.],
              [ 70.,  97.,  81.,  ...,  89.,  80., 135.],
              [ 70., 100.,  74.,  ...,  70.,  54.,  69.],
              ...,
              [ 96., 102., 100.,  ...,  88.,  55.,  28.],
              [ 91.,  95.,  99.,  ...,  94.,  59.,  27.],
              [ 90.,  94., 101.,  ...,  94.,  58.,  26.]]]]), tensor([3, 8, 8,  ..., 5, 1, 7]))]



```python
#由于Sequential里面只能是类,而view和reshape都是方法因此需要定义一个Flatten类
#将它放在Sequential里头
class Flatten(nn.Module):
    def __init__(self):
        super(Flatten,self).__init__()
        
    def forward(self,input):
        return input.view(input.size(0),-1)
class  lenet5(nn.Module):
    def __init__(self):
        super(lenet5,self).__init__()
        
        self.module = nn.Sequential(
            nn.Conv2d(3,6,kernel_size=5,stride=1,padding=0),
            nn.MaxPool2d(kernel_size=2,stride=2,padding=0),
            nn.Conv2d(6,16,kernel_size=5,stride=1,padding=0),
            nn.MaxPool2d(kernel_size=2,stride=2,padding=0),
            Flatten(),
            nn.Linear(16*5*5,120),
            nn.ReLU(),
            nn.Linear(120,84),
            nn.ReLU(),
            nn.Linear(84,10)
            )
        #tem = torch.randn(2,3,32,32)
       # out = self.module(tem)
        #print(out.shape
    #self.loss_fun = nn.CrossEntropyLoss() 
    def forward(self,x):
        logits = self.module(x)
        #loss = self.loss_fun(logits,y)
        return logits
epochs = 100
device = torch.device('cuda:0')
Lenet5 = lenet5().to(device)
loss_fun = nn.CrossEntropyLoss().to(device)
optimizer = optim.SGD(Lenet5.parameters(),lr = 1e-3)
for epoch in range(epochs):
    Lenet5.train()
    for batch_idx,(data,label) in enumerate(train_data):
        for i in range(100):
            datas = data[i*100:(i+1)*100,:,:,:]
            #print(data.shape)
            datas = datas.to(device)
            #print(data.shape)
            logits = Lenet5(datas)
            labels  =  label[i*100:(i+1)*100]
            labels = labels.to(device)
            loss  = loss_fun(logits,labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        print('epoch:{}\tbatch:{}\tloss:{}'.format(epoch,batch_idx,loss.item()))
    loss = 0
    correct = 0
    Lenet5.eval()
    with  torch.no_grad():
        for batch_idx,(data,label) in enumerate(test_data):
            for i in range(100):
                datas = data[i*100:(i+1)*100,:,:,:]
                datas =  datas.to(device)
                labels = label[i*100:(i+1)*100]
                labels = labels.to(device)
                logits = Lenet5(datas)
                loss += loss_fun(logits,labels).item()
                predict = logits.argmax(dim=1)
                correct += predict.eq(labels).float().sum().item()
        loss /=len(label)
        print('epoch:{}\ttest_data_loss:{}\tAccurate{:2f}%'.format(epoch,loss,100.*correct/len(label))) 

epoch:0 batch:0 loss:2.1763486862182617
epoch:0 batch:1 loss:1.8485407829284668
epoch:0 batch:2 loss:1.8671174049377441
epoch:0 batch:3 loss:1.8870524168014526
epoch:0 batch:4 loss:1.9330265522003174
epoch:0 test_data_loss:0.017911282896995544 Accurate36.050000%
epoch:1 batch:0 loss:1.8310177326202393
epoch:1 batch:1 loss:1.6556342840194702
epoch:1 batch:2 loss:1.5648118257522583
epoch:1 batch:3 loss:1.6772332191467285
epoch:1 batch:4 loss:1.8390121459960938
epoch:1 test_data_loss:0.01690780953168869  Accurate40.180000%
epoch:2 batch:0 loss:1.6617430448532104
epoch:2 batch:1 loss:1.6150680780410767
epoch:2 batch:2 loss:1.4591856002807617
epoch:2 batch:3 loss:1.5646525621414185
epoch:2 batch:4 loss:1.7958917617797852
epoch:2 test_data_loss:0.01627845757007599  Accurate42.370000%
epoch:3 batch:0 loss:1.578587532043457
epoch:3 batch:1 loss:1.5681748390197754
epoch:3 batch:2 loss:1.4131228923797607
epoch:3 batch:3 loss:1.489415168762207
epoch:3 batch:4 loss:1.7504119873046875
epoch:3 test_data_loss:0.01585704526901245  Accurate43.700000%
epoch:4 batch:0 loss:1.5407977104187012
epoch:4 batch:1 loss:1.5327751636505127
epoch:4 batch:2 loss:1.3862621784210205
epoch:4 batch:3 loss:1.4344329833984375
epoch:4 batch:4 loss:1.6997625827789307
epoch:4 test_data_loss:0.015395513820648193 Accurate45.150000%
epoch:5 batch:0 loss:1.5082505941390991
epoch:5 batch:1 loss:1.520317554473877
epoch:5 batch:2 loss:1.3617457151412964
epoch:5 batch:3 loss:1.3905024528503418
epoch:5 batch:4 loss:1.649784803390503
epoch:5 test_data_loss:0.015025948679447175 Accurate46.260000%
epoch:6 batch:0 loss:1.4764683246612549
epoch:6 batch:1 loss:1.4926671981811523
epoch:6 batch:2 loss:1.3316032886505127
epoch:6 batch:3 loss:1.3512217998504639
epoch:6 batch:4 loss:1.6095126867294312
epoch:6 test_data_loss:0.014772102546691895 Accurate47.390000%
epoch:7 batch:0 loss:1.454451560974121
epoch:7 batch:1 loss:1.4697648286819458
epoch:7 batch:2 loss:1.3248602151870728
epoch:7 batch:3 loss:1.318414568901062
epoch:7 batch:4 loss:1.5752568244934082
epoch:7 test_data_loss:0.014576126658916473 Accurate48.030000%
epoch:8 batch:0 loss:1.4270124435424805
epoch:8 batch:1 loss:1.4474483728408813
epoch:8 batch:2 loss:1.3211431503295898
epoch:8 batch:3 loss:1.2955034971237183
epoch:8 batch:4 loss:1.561460256576538
epoch:8 test_data_loss:0.014510756587982178 Accurate48.240000%
epoch:9 batch:0 loss:1.399457573890686
epoch:9 batch:1 loss:1.4223369359970093
epoch:9 batch:2 loss:1.3062889575958252
epoch:9 batch:3 loss:1.2729438543319702
epoch:9 batch:4 loss:1.5518829822540283
epoch:9 test_data_loss:0.014557824647426606 Accurate48.320000%
epoch:10    batch:0 loss:1.3641740083694458
epoch:10    batch:1 loss:1.3875764608383179
epoch:10    batch:2 loss:1.3025227785110474
epoch:10    batch:3 loss:1.2468807697296143
epoch:10    batch:4 loss:1.5115150213241577
epoch:10    test_data_loss:0.014227166616916656 Accurate49.220000%
epoch:11    batch:0 loss:1.3503832817077637
epoch:11    batch:1 loss:1.3648884296417236
epoch:11    batch:2 loss:1.2871862649917603
epoch:11    batch:3 loss:1.2195641994476318
epoch:11    batch:4 loss:1.492020845413208
epoch:11    test_data_loss:0.014081847751140594 Accurate49.800000%
epoch:12    batch:0 loss:1.3301435708999634
epoch:12    batch:1 loss:1.34531569480896
epoch:12    batch:2 loss:1.2827187776565552
epoch:12    batch:3 loss:1.2025625705718994
epoch:12    batch:4 loss:1.4770184755325317
epoch:12    test_data_loss:0.013916493248939513 Accurate50.580000%
epoch:13    batch:0 loss:1.3146061897277832
epoch:13    batch:1 loss:1.3243380784988403
epoch:13    batch:2 loss:1.2634878158569336
epoch:13    batch:3 loss:1.18169367313385
epoch:13    batch:4 loss:1.4633888006210327
epoch:13    test_data_loss:0.013972422003746033 Accurate50.270000%
epoch:14    batch:0 loss:1.3072998523712158
epoch:14    batch:1 loss:1.319836139678955
epoch:14    batch:2 loss:1.2426447868347168
epoch:14    batch:3 loss:1.1691384315490723
epoch:14    batch:4 loss:1.443387508392334
epoch:14    test_data_loss:0.013678255820274352 Accurate51.560000%
epoch:15    batch:0 loss:1.296415090560913
epoch:15    batch:1 loss:1.3018113374710083
epoch:15    batch:2 loss:1.2236725091934204
epoch:15    batch:3 loss:1.1569795608520508
epoch:15    batch:4 loss:1.4256402254104614
epoch:15    test_data_loss:0.013456743252277375 Accurate52.280000%
epoch:16    batch:0 loss:1.3056328296661377
epoch:16    batch:1 loss:1.285027027130127
epoch:16    batch:2 loss:1.213087797164917
epoch:16    batch:3 loss:1.1255110502243042
epoch:16    batch:4 loss:1.4150794744491577
epoch:16    test_data_loss:0.013432854449748993 Accurate52.480000%
epoch:17    batch:0 loss:1.286566972732544
epoch:17    batch:1 loss:1.273400902748108
epoch:17    batch:2 loss:1.1688098907470703
epoch:17    batch:3 loss:1.1039488315582275
epoch:17    batch:4 loss:1.403935432434082
epoch:17    test_data_loss:0.013373901331424713 Accurate52.670000%
epoch:18    batch:0 loss:1.2652451992034912
epoch:18    batch:1 loss:1.2678509950637817
epoch:18    batch:2 loss:1.1503956317901611
epoch:18    batch:3 loss:1.1067581176757812
epoch:18    batch:4 loss:1.3943153619766235
epoch:18    test_data_loss:0.013238057947158814 Accurate53.140000%
epoch:19    batch:0 loss:1.249767780303955
epoch:19    batch:1 loss:1.2521820068359375
epoch:19    batch:2 loss:1.1296790838241577
epoch:19    batch:3 loss:1.0934704542160034
epoch:19    batch:4 loss:1.3765597343444824
epoch:19    test_data_loss:0.013092611998319625 Accurate53.710000%
epoch:20    batch:0 loss:1.246160626411438
epoch:20    batch:1 loss:1.2418464422225952
epoch:20    batch:2 loss:1.112160563468933
epoch:20    batch:3 loss:1.0844348669052124
epoch:20    batch:4 loss:1.375006079673767
epoch:20    test_data_loss:0.01314392517209053  Accurate53.820000%
epoch:21    batch:0 loss:1.230027675628662
epoch:21    batch:1 loss:1.2319188117980957
epoch:21    batch:2 loss:1.1040558815002441
epoch:21    batch:3 loss:1.0825090408325195
epoch:21    batch:4 loss:1.361841082572937
epoch:21    test_data_loss:0.013016697251796723 Accurate54.540000%
epoch:22    batch:0 loss:1.2315549850463867
epoch:22    batch:1 loss:1.226099967956543
epoch:22    batch:2 loss:1.0663682222366333
epoch:22    batch:3 loss:1.0613822937011719
epoch:22    batch:4 loss:1.3560349941253662
epoch:22    test_data_loss:0.012939717733860016 Accurate54.580000%
epoch:23    batch:0 loss:1.2108231782913208
epoch:23    batch:1 loss:1.211175799369812
epoch:23    batch:2 loss:1.049925684928894
epoch:23    batch:3 loss:1.0554488897323608
epoch:23    batch:4 loss:1.3443384170532227
epoch:23    test_data_loss:0.012848593050241471 Accurate55.140000%
epoch:24    batch:0 loss:1.1964356899261475
epoch:24    batch:1 loss:1.1944196224212646
epoch:24    batch:2 loss:1.056996464729309
epoch:24    batch:3 loss:1.0372012853622437
epoch:24    batch:4 loss:1.3305768966674805
epoch:24    test_data_loss:0.01277999370098114  Accurate55.210000%
epoch:25    batch:0 loss:1.1803444623947144
epoch:25    batch:1 loss:1.180546522140503
epoch:25    batch:2 loss:1.0308318138122559
epoch:25    batch:3 loss:1.032820463180542
epoch:25    batch:4 loss:1.3212608098983765
epoch:25    test_data_loss:0.012731006252765655 Accurate55.280000%
epoch:26    batch:0 loss:1.1709498167037964
epoch:26    batch:1 loss:1.1684887409210205
epoch:26    batch:2 loss:1.0190114974975586
epoch:26    batch:3 loss:1.0146610736846924
epoch:26    batch:4 loss:1.3171403408050537
epoch:26    test_data_loss:0.012678796166181564 Accurate55.680000%
epoch:27    batch:0 loss:1.15721595287323
epoch:27    batch:1 loss:1.1603751182556152
epoch:27    batch:2 loss:0.9998421669006348
epoch:27    batch:3 loss:1.003671646118164
epoch:27    batch:4 loss:1.3122105598449707
epoch:27    test_data_loss:0.012625258141756059 Accurate55.700000%
epoch:28    batch:0 loss:1.147373080253601
epoch:28    batch:1 loss:1.143071174621582
epoch:28    batch:2 loss:0.9861371517181396
epoch:28    batch:3 loss:0.9906672835350037
epoch:28    batch:4 loss:1.300931692123413
epoch:28    test_data_loss:0.0126634123980999   Accurate55.890000%
epoch:29    batch:0 loss:1.134721279144287
epoch:29    batch:1 loss:1.1332404613494873
epoch:29    batch:2 loss:0.9739859104156494
epoch:29    batch:3 loss:0.9740185737609863
epoch:29    batch:4 loss:1.2824451923370361
epoch:29    test_data_loss:0.012466204243898391 Accurate56.550000%
epoch:30    batch:0 loss:1.1220331192016602
epoch:30    batch:1 loss:1.129509687423706
epoch:30    batch:2 loss:0.9555858373641968
epoch:30    batch:3 loss:0.9615256786346436
epoch:30    batch:4 loss:1.2834577560424805
epoch:30    test_data_loss:0.012503732699155808 Accurate56.550000%
epoch:31    batch:0 loss:1.116666316986084
epoch:31    batch:1 loss:1.1220072507858276
epoch:31    batch:2 loss:0.9467626810073853
epoch:31    batch:3 loss:0.9558188915252686
epoch:31    batch:4 loss:1.2670265436172485
epoch:31    test_data_loss:0.012409158754348755 Accurate56.860000%
epoch:32    batch:0 loss:1.10989248752594
epoch:32    batch:1 loss:1.105167031288147
epoch:32    batch:2 loss:0.9359852075576782
epoch:32    batch:3 loss:0.9423297047615051
epoch:32    batch:4 loss:1.2532808780670166
epoch:32    test_data_loss:0.012353265279531478 Accurate57.120000%
epoch:33    batch:0 loss:1.0959490537643433
epoch:33    batch:1 loss:1.0946422815322876
epoch:33    batch:2 loss:0.9063156247138977
epoch:33    batch:3 loss:0.9346637725830078
epoch:33    batch:4 loss:1.247786045074463
epoch:33    test_data_loss:0.012389025342464447 Accurate56.790000%
epoch:34    batch:0 loss:1.0865745544433594
epoch:34    batch:1 loss:1.0887271165847778
epoch:34    batch:2 loss:0.8950309753417969
epoch:34    batch:3 loss:0.9248678088188171
epoch:34    batch:4 loss:1.2340625524520874
epoch:34    test_data_loss:0.012240403681993485 Accurate57.470000%
epoch:35    batch:0 loss:1.0783060789108276
epoch:35    batch:1 loss:1.0845303535461426
epoch:35    batch:2 loss:0.8918731808662415
epoch:35    batch:3 loss:0.9202204346656799
epoch:35    batch:4 loss:1.2402079105377197
epoch:35    test_data_loss:0.012367400372028351 Accurate57.160000%
epoch:36    batch:0 loss:1.0713376998901367
epoch:36    batch:1 loss:1.0743495225906372
epoch:36    batch:2 loss:0.8726376295089722
epoch:36    batch:3 loss:0.9055319428443909
epoch:36    batch:4 loss:1.2279491424560547
epoch:36    test_data_loss:0.01228697457909584  Accurate57.530000%
epoch:37    batch:0 loss:1.063300371170044
epoch:37    batch:1 loss:1.071332573890686
epoch:37    batch:2 loss:0.8584305644035339
epoch:37    batch:3 loss:0.909121572971344
epoch:37    batch:4 loss:1.237462043762207
epoch:37    test_data_loss:0.012473661673069    Accurate56.820000%
epoch:38    batch:0 loss:1.0622907876968384
epoch:38    batch:1 loss:1.0578161478042603
epoch:38    batch:2 loss:0.8334359526634216
epoch:38    batch:3 loss:0.898313581943512
epoch:38    batch:4 loss:1.1832588911056519
epoch:38    test_data_loss:0.012111672431230545 Accurate58.120000%
epoch:39    batch:0 loss:1.053490161895752
epoch:39    batch:1 loss:1.0428667068481445
epoch:39    batch:2 loss:0.8298377394676208
epoch:39    batch:3 loss:0.8762632012367249
epoch:39    batch:4 loss:1.17948579788208
epoch:39    test_data_loss:0.012120541250705719 Accurate58.140000%
epoch:40    batch:0 loss:1.0463067293167114
epoch:40    batch:1 loss:1.0299921035766602
epoch:40    batch:2 loss:0.822319507598877
epoch:40    batch:3 loss:0.8699830770492554
epoch:40    batch:4 loss:1.1946812868118286
epoch:40    test_data_loss:0.012327069675922394 Accurate57.490000%
epoch:41    batch:0 loss:1.0353924036026
epoch:41    batch:1 loss:1.0170131921768188
epoch:41    batch:2 loss:0.8004801273345947
epoch:41    batch:3 loss:0.8667176961898804
epoch:41    batch:4 loss:1.1923938989639282
epoch:41    test_data_loss:0.012430083268880844 Accurate57.260000%
epoch:42    batch:0 loss:1.0293288230895996
epoch:42    batch:1 loss:1.0096769332885742
epoch:42    batch:2 loss:0.7901542782783508
epoch:42    batch:3 loss:0.8506443500518799
epoch:42    batch:4 loss:1.1419620513916016
epoch:42    test_data_loss:0.01194839488863945  Accurate58.890000%
epoch:43    batch:0 loss:1.0246968269348145
epoch:43    batch:1 loss:1.0024477243423462
epoch:43    batch:2 loss:0.7936599850654602
epoch:43    batch:3 loss:0.8373702168464661
epoch:43    batch:4 loss:1.1571813821792603
epoch:43    test_data_loss:0.012122386461496354 Accurate58.550000%
epoch:44    batch:0 loss:1.0186289548873901
epoch:44    batch:1 loss:0.9998814463615417
epoch:44    batch:2 loss:0.7855499386787415
epoch:44    batch:3 loss:0.8292716145515442
epoch:44    batch:4 loss:1.1527979373931885
epoch:44    test_data_loss:0.012184381687641143 Accurate58.440000%
epoch:45    batch:0 loss:1.005703330039978
epoch:45    batch:1 loss:0.9859725832939148
epoch:45    batch:2 loss:0.7656514048576355
epoch:45    batch:3 loss:0.8201987743377686
epoch:45    batch:4 loss:1.1292855739593506
epoch:45    test_data_loss:0.012021716064214706 Accurate58.920000%
epoch:46    batch:0 loss:1.005447268486023
epoch:46    batch:1 loss:0.9808069467544556
epoch:46    batch:2 loss:0.7645500302314758
epoch:46    batch:3 loss:0.8219192624092102
epoch:46    batch:4 loss:1.124232292175293
epoch:46    test_data_loss:0.01202094299197197  Accurate58.790000%
epoch:47    batch:0 loss:0.9986887574195862
epoch:47    batch:1 loss:0.9843454957008362
epoch:47    batch:2 loss:0.7336840033531189
epoch:47    batch:3 loss:0.810841977596283
epoch:47    batch:4 loss:1.1182644367218018
epoch:47    test_data_loss:0.012076971423625946 Accurate58.770000%
epoch:48    batch:0 loss:0.9982472062110901
epoch:48    batch:1 loss:0.9766039252281189
epoch:48    batch:2 loss:0.7371082901954651
epoch:48    batch:3 loss:0.8079491257667542
epoch:48    batch:4 loss:1.0969032049179077
epoch:48    test_data_loss:0.011909782522916794 Accurate59.150000%
epoch:49    batch:0 loss:0.9908055663108826
epoch:49    batch:1 loss:0.9768622517585754
epoch:49    batch:2 loss:0.7220377326011658
epoch:49    batch:3 loss:0.7978006601333618
epoch:49    batch:4 loss:1.0883194208145142
epoch:49    test_data_loss:0.011909426361322403 Accurate59.320000%
epoch:50    batch:0 loss:0.983595073223114
epoch:50    batch:1 loss:0.9729110598564148
epoch:50    batch:2 loss:0.7186201214790344
epoch:50    batch:3 loss:0.7884392738342285
epoch:50    batch:4 loss:1.0851426124572754
epoch:50    test_data_loss:0.011971778297424317 Accurate59.150000%
epoch:51    batch:0 loss:0.9790523052215576
epoch:51    batch:1 loss:0.9831700325012207
epoch:51    batch:2 loss:0.7067458629608154
epoch:51    batch:3 loss:0.7885497212409973
epoch:51    batch:4 loss:1.0863707065582275
epoch:51    test_data_loss:0.012032448935508727 Accurate58.950000%
epoch:52    batch:0 loss:0.976442277431488
epoch:52    batch:1 loss:0.9837910532951355
epoch:52    batch:2 loss:0.6970487833023071
epoch:52    batch:3 loss:0.79522705078125
epoch:52    batch:4 loss:1.0756380558013916
epoch:52    test_data_loss:0.011955438911914825 Accurate59.340000%
epoch:53    batch:0 loss:0.9686588048934937
epoch:53    batch:1 loss:0.9714369773864746
epoch:53    batch:2 loss:0.696596622467041
epoch:53    batch:3 loss:0.7947900295257568
epoch:53    batch:4 loss:1.0634669065475464
epoch:53    test_data_loss:0.011919073539972305 Accurate59.490000%
epoch:54    batch:0 loss:0.9600600600242615
epoch:54    batch:1 loss:0.9552971720695496
epoch:54    batch:2 loss:0.6850804090499878
epoch:54    batch:3 loss:0.7764192819595337
epoch:54    batch:4 loss:1.0798065662384033
epoch:54    test_data_loss:0.012189370846748352 Accurate58.750000%
epoch:55    batch:0 loss:0.948850691318512
epoch:55    batch:1 loss:0.9429957866668701
epoch:55    batch:2 loss:0.6748811602592468
epoch:55    batch:3 loss:0.7751486301422119
epoch:55    batch:4 loss:1.0750495195388794
epoch:55    test_data_loss:0.012300976008176803 Accurate58.620000%
epoch:56    batch:0 loss:0.9466851949691772
epoch:56    batch:1 loss:0.9432587623596191
epoch:56    batch:2 loss:0.6735990047454834
epoch:56    batch:3 loss:0.751315176486969
epoch:56    batch:4 loss:1.0524924993515015
epoch:56    test_data_loss:0.012020810967683792 Accurate59.500000%
epoch:57    batch:0 loss:0.9404129981994629
epoch:57    batch:1 loss:0.939484715461731
epoch:57    batch:2 loss:0.6665537357330322
epoch:57    batch:3 loss:0.773976743221283
epoch:57    batch:4 loss:1.0542845726013184
epoch:57    test_data_loss:0.012102680951356888 Accurate59.310000%
epoch:58    batch:0 loss:0.9338595867156982
epoch:58    batch:1 loss:0.9297202229499817
epoch:58    batch:2 loss:0.6513926982879639
epoch:58    batch:3 loss:0.7511664628982544
epoch:58    batch:4 loss:1.033987045288086
epoch:58    test_data_loss:0.012076104605197906 Accurate59.430000%
epoch:59    batch:0 loss:0.9271847009658813
epoch:59    batch:1 loss:0.9180575609207153
epoch:59    batch:2 loss:0.6456846594810486
epoch:59    batch:3 loss:0.7758282423019409
epoch:59    batch:4 loss:1.0413581132888794
epoch:59    test_data_loss:0.01211642199754715  Accurate59.290000%
epoch:60    batch:0 loss:0.9270028471946716
epoch:60    batch:1 loss:0.9259335994720459
epoch:60    batch:2 loss:0.6387282013893127
epoch:60    batch:3 loss:0.734138548374176
epoch:60    batch:4 loss:1.036148190498352
epoch:60    test_data_loss:0.012161384063959122 Accurate59.220000%
epoch:61    batch:0 loss:0.9203653931617737
epoch:61    batch:1 loss:0.9158979654312134
epoch:61    batch:2 loss:0.6304754018783569
epoch:61    batch:3 loss:0.7710758447647095
epoch:61    batch:4 loss:1.035487413406372
epoch:61    test_data_loss:0.012326200085878373 Accurate58.760000%
epoch:62    batch:0 loss:0.903017520904541
epoch:62    batch:1 loss:0.916846513748169
epoch:62    batch:2 loss:0.6255664229393005
epoch:62    batch:3 loss:0.7590267062187195
epoch:62    batch:4 loss:0.996479868888855
epoch:62    test_data_loss:0.012058472818136216 Accurate59.870000%
epoch:63    batch:0 loss:0.8996082544326782
epoch:63    batch:1 loss:0.9081469774246216
epoch:63    batch:2 loss:0.6192362308502197
epoch:63    batch:3 loss:0.7516011595726013
epoch:63    batch:4 loss:1.0203711986541748
epoch:63    test_data_loss:0.01221827574968338  Accurate59.070000%
epoch:64    batch:0 loss:0.8907505869865417
epoch:64    batch:1 loss:0.9166998267173767
epoch:64    batch:2 loss:0.6077508330345154
epoch:64    batch:3 loss:0.7394577264785767
epoch:64    batch:4 loss:1.0201599597930908
epoch:64    test_data_loss:0.012330314660072327 Accurate58.870000%
epoch:65    batch:0 loss:0.8966385126113892
epoch:65    batch:1 loss:0.8998122215270996
epoch:65    batch:2 loss:0.6034379601478577
epoch:65    batch:3 loss:0.7274463176727295
epoch:65    batch:4 loss:1.005628228187561
epoch:65    test_data_loss:0.01231836119890213  Accurate58.830000%
epoch:66    batch:0 loss:0.883089005947113
epoch:66    batch:1 loss:0.8922118544578552
epoch:66    batch:2 loss:0.596132218837738
epoch:66    batch:3 loss:0.7443216443061829
epoch:66    batch:4 loss:1.0012356042861938
epoch:66    test_data_loss:0.012521785014867783 Accurate58.590000%
epoch:67    batch:0 loss:0.8771061897277832
epoch:67    batch:1 loss:0.8932440876960754
epoch:67    batch:2 loss:0.5898717641830444
epoch:67    batch:3 loss:0.7238337993621826
epoch:67    batch:4 loss:0.99314284324646
epoch:67    test_data_loss:0.012429105460643769 Accurate59.000000%
epoch:68    batch:0 loss:0.8710014820098877
epoch:68    batch:1 loss:0.8868461847305298
epoch:68    batch:2 loss:0.591881513595581
epoch:68    batch:3 loss:0.7148791551589966
epoch:68    batch:4 loss:0.9507726430892944
epoch:68    test_data_loss:0.012235509532690049 Accurate59.500000%
epoch:69    batch:0 loss:0.875399649143219
epoch:69    batch:1 loss:0.882342517375946
epoch:69    batch:2 loss:0.5730912089347839
epoch:69    batch:3 loss:0.7121666073799133
epoch:69    batch:4 loss:0.9842464923858643
epoch:69    test_data_loss:0.012471738237142562 Accurate58.800000%
epoch:70    batch:0 loss:0.8595896363258362
epoch:70    batch:1 loss:0.8784759640693665
epoch:70    batch:2 loss:0.5651609897613525
epoch:70    batch:3 loss:0.7028424143791199
epoch:70    batch:4 loss:0.9836839437484741
epoch:70    test_data_loss:0.012522421032190322 Accurate58.720000%
epoch:71    batch:0 loss:0.8662053942680359
epoch:71    batch:1 loss:0.8788058757781982
epoch:71    batch:2 loss:0.5588352084159851
epoch:71    batch:3 loss:0.690401017665863
epoch:71    batch:4 loss:0.9646252989768982
epoch:71    test_data_loss:0.012400003510713577 Accurate59.110000%
epoch:72    batch:0 loss:0.8529565334320068
epoch:72    batch:1 loss:0.8709671497344971
epoch:72    batch:2 loss:0.553376317024231
epoch:72    batch:3 loss:0.6751856207847595
epoch:72    batch:4 loss:0.9765558838844299
epoch:72    test_data_loss:0.012685820615291596 Accurate58.630000%
epoch:73    batch:0 loss:0.854845404624939
epoch:73    batch:1 loss:0.8709725737571716
epoch:73    batch:2 loss:0.5648348331451416
epoch:73    batch:3 loss:0.6906089782714844
epoch:73    batch:4 loss:0.9492604732513428
epoch:73    test_data_loss:0.012380959230661391 Accurate59.420000%
epoch:74    batch:0 loss:0.8366735577583313
epoch:74    batch:1 loss:0.8609594702720642
epoch:74    batch:2 loss:0.5395348072052002
epoch:74    batch:3 loss:0.6860594749450684
epoch:74    batch:4 loss:0.9336348176002502
epoch:74    test_data_loss:0.01231137964129448  Accurate59.590000%
epoch:75    batch:0 loss:0.8330693244934082
epoch:75    batch:1 loss:0.8502030968666077
epoch:75    batch:2 loss:0.5497587323188782
epoch:75    batch:3 loss:0.6887615323066711
epoch:75    batch:4 loss:0.9692203402519226
epoch:75    test_data_loss:0.01274453642964363  Accurate58.550000%
epoch:76    batch:0 loss:0.8370388150215149
epoch:76    batch:1 loss:0.8443731069564819
epoch:76    batch:2 loss:0.5396125316619873
epoch:76    batch:3 loss:0.6720179915428162
epoch:76    batch:4 loss:0.9343408346176147
epoch:76    test_data_loss:0.012507897245883942 Accurate59.250000%
epoch:77    batch:0 loss:0.8270650506019592
epoch:77    batch:1 loss:0.8446207642555237
epoch:77    batch:2 loss:0.5341995358467102
epoch:77    batch:3 loss:0.6691818833351135
epoch:77    batch:4 loss:0.9361714124679565
epoch:77    test_data_loss:0.01255682343840599  Accurate59.200000%
epoch:78    batch:0 loss:0.8156286478042603
epoch:78    batch:1 loss:0.8541104197502136
epoch:78    batch:2 loss:0.5318109393119812
epoch:78    batch:3 loss:0.6843156218528748
epoch:78    batch:4 loss:0.9118959307670593
epoch:78    test_data_loss:0.012407086634635925 Accurate59.480000%
epoch:79    batch:0 loss:0.8160406351089478
epoch:79    batch:1 loss:0.8300583362579346
epoch:79    batch:2 loss:0.5285741686820984
epoch:79    batch:3 loss:0.6565198302268982
epoch:79    batch:4 loss:0.8986861705780029
epoch:79    test_data_loss:0.012445626938343049 Accurate59.570000%
epoch:80    batch:0 loss:0.8102062344551086
epoch:80    batch:1 loss:0.8347083926200867
epoch:80    batch:2 loss:0.5339607000350952
epoch:80    batch:3 loss:0.6456961035728455
epoch:80    batch:4 loss:0.9030000567436218
epoch:80    test_data_loss:0.012595359736680984 Accurate58.940000%
epoch:81    batch:0 loss:0.8115819692611694
epoch:81    batch:1 loss:0.8459965586662292
epoch:81    batch:2 loss:0.5200003981590271
epoch:81    batch:3 loss:0.6476116180419922
epoch:81    batch:4 loss:0.9068138003349304
epoch:81    test_data_loss:0.012721691608428955 Accurate58.970000%
epoch:82    batch:0 loss:0.7949211597442627
epoch:82    batch:1 loss:0.8297266960144043
epoch:82    batch:2 loss:0.5128525495529175
epoch:82    batch:3 loss:0.6498642563819885
epoch:82    batch:4 loss:0.894875168800354
epoch:82    test_data_loss:0.012713435411453247 Accurate59.090000%
epoch:83    batch:0 loss:0.791240930557251
epoch:83    batch:1 loss:0.8250916004180908
epoch:83    batch:2 loss:0.5194141864776611
epoch:83    batch:3 loss:0.6340817213058472
epoch:83    batch:4 loss:0.8656267523765564
epoch:83    test_data_loss:0.012319718247652054 Accurate60.230000%
epoch:84    batch:0 loss:0.7851470112800598
epoch:84    batch:1 loss:0.8251030445098877
epoch:84    batch:2 loss:0.5101059675216675
epoch:84    batch:3 loss:0.6454721093177795
epoch:84    batch:4 loss:0.8840279579162598
epoch:84    test_data_loss:0.012764427667856217 Accurate59.060000%
epoch:85    batch:0 loss:0.7791163921356201
epoch:85    batch:1 loss:0.8116323947906494
epoch:85    batch:2 loss:0.5036025047302246
epoch:85    batch:3 loss:0.6301839351654053
epoch:85    batch:4 loss:0.879149854183197
epoch:85    test_data_loss:0.012517074817419052 Accurate59.660000%
epoch:86    batch:0 loss:0.7759548425674438
epoch:86    batch:1 loss:0.8047389984130859
epoch:86    batch:2 loss:0.502409815788269
epoch:86    batch:3 loss:0.6240792870521545
epoch:86    batch:4 loss:0.8872179388999939
epoch:86    test_data_loss:0.012680694687366486 Accurate59.530000%
epoch:87    batch:0 loss:0.7670626640319824
epoch:87    batch:1 loss:0.8061250448226929
epoch:87    batch:2 loss:0.49632957577705383
epoch:87    batch:3 loss:0.6225496530532837
epoch:87    batch:4 loss:0.8548753261566162
epoch:87    test_data_loss:0.012535573565959931 Accurate59.960000%
epoch:88    batch:0 loss:0.7627490162849426
epoch:88    batch:1 loss:0.8064558506011963
epoch:88    batch:2 loss:0.4960155189037323
epoch:88    batch:3 loss:0.6191938519477844
epoch:88    batch:4 loss:0.8474365472793579
epoch:88    test_data_loss:0.012563345158100129 Accurate60.110000%
epoch:89    batch:0 loss:0.7571389675140381
epoch:89    batch:1 loss:0.7934638261795044
epoch:89    batch:2 loss:0.48885154724121094
epoch:89    batch:3 loss:0.6137969493865967
epoch:89    batch:4 loss:0.8477094173431396
epoch:89    test_data_loss:0.012598423415422439 Accurate59.830000%
epoch:90    batch:0 loss:0.7546694874763489
epoch:90    batch:1 loss:0.7917743921279907
epoch:90    batch:2 loss:0.4976850152015686
epoch:90    batch:3 loss:0.5993662476539612
epoch:90    batch:4 loss:0.8570490479469299
epoch:90    test_data_loss:0.012875428235530853 Accurate59.410000%
epoch:91    batch:0 loss:0.7442094683647156
epoch:91    batch:1 loss:0.7596681118011475
epoch:91    batch:2 loss:0.4806060492992401
epoch:91    batch:3 loss:0.6272403597831726
epoch:91    batch:4 loss:0.8467599749565125
epoch:91    test_data_loss:0.012833891832828521 Accurate59.470000%
epoch:92    batch:0 loss:0.7448679208755493
epoch:92    batch:1 loss:0.7580040097236633
epoch:92    batch:2 loss:0.47535035014152527
epoch:92    batch:3 loss:0.5988304018974304
epoch:92    batch:4 loss:0.8385698795318604
epoch:92    test_data_loss:0.012903959184885025 Accurate59.550000%
epoch:93    batch:0 loss:0.735319197177887
epoch:93    batch:1 loss:0.7605016827583313
epoch:93    batch:2 loss:0.46915584802627563
epoch:93    batch:3 loss:0.6321775913238525
epoch:93    batch:4 loss:0.8465431928634644
epoch:93    test_data_loss:0.012943225288391114 Accurate59.610000%
epoch:94    batch:0 loss:0.7304616570472717
epoch:94    batch:1 loss:0.7537645101547241
epoch:94    batch:2 loss:0.4738635718822479
epoch:94    batch:3 loss:0.5927462577819824
epoch:94    batch:4 loss:0.8243400454521179
epoch:94    test_data_loss:0.012895413303375245 Accurate59.910000%
epoch:95    batch:0 loss:0.730658769607544
epoch:95    batch:1 loss:0.7524699568748474
epoch:95    batch:2 loss:0.47555482387542725
epoch:95    batch:3 loss:0.616936445236206
epoch:95    batch:4 loss:0.8252308368682861
epoch:95    test_data_loss:0.013015452116727829 Accurate59.520000%
epoch:96    batch:0 loss:0.7283960580825806
epoch:96    batch:1 loss:0.7443860769271851
epoch:96    batch:2 loss:0.46249961853027344
epoch:96    batch:3 loss:0.5884655117988586
epoch:96    batch:4 loss:0.8256667256355286
epoch:96    test_data_loss:0.01306050174832344  Accurate59.630000%
epoch:97    batch:0 loss:0.7096920609474182
epoch:97    batch:1 loss:0.7447115182876587
epoch:97    batch:2 loss:0.4614408016204834
epoch:97    batch:3 loss:0.6058042645454407
epoch:97    batch:4 loss:0.8241249322891235
epoch:97    test_data_loss:0.01324879680275917  Accurate59.010000%
epoch:98    batch:0 loss:0.7114317417144775
epoch:98    batch:1 loss:0.7325578927993774
epoch:98    batch:2 loss:0.45755741000175476
epoch:98    batch:3 loss:0.5789157152175903
epoch:98    batch:4 loss:0.8268184661865234
epoch:98    test_data_loss:0.013244137221574784 Accurate59.220000%
epoch:99    batch:0 loss:0.7111270427703857
epoch:99    batch:1 loss:0.7397462725639343
epoch:99    batch:2 loss:0.4659014642238617
epoch:99    batch:3 loss:0.5717681646347046
epoch:99    batch:4 loss:0.8100776076316833
epoch:99    test_data_loss:0.013112578052282333 Accurate59.910000%
本人只是将其实现出来学习率和参数初始化是随机选取的,
而且只迭代了100次准确就达到了将近60%
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容