1、背景
Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器产生的id必须不同。
2、Snowflake算法核心
把时间戳,工作机器id,序列号组合在一起。
除了最高位bit标记为不可用以外,其余三组bit占位均可浮动,看具体的业务需求而定。默认情况下41bit的时间戳可以支持该算法使用到2082年,10bit的工作机器id可以支持1023台机器,序列号支持1毫秒产生4095个自增序列id。下文会具体分析。
2.1 Snowflake – 时间戳
这里时间戳的细度是毫秒级,具体代码如下,建议使用64位linux系统机器,因为有vdso,gettimeofday()在用户态就可以完成操作,减少了进入内核态的损耗。
uint64_t generateStamp()
{
timeval tv;
gettimeofday(&tv, 0);
return (uint64_t)tv.tv_sec * 1000 + (uint64_t)tv.tv_usec / 1000;
}
默认情况下有41个bit可以供使用,那么一共有T(1llu << 41)毫秒供你使用分配,年份 = T / (3600 * 24 * 365 * 1000) = 69.7年。如果你只给时间戳分配39个bit使用,那么根据同样的算法最后年份 = 17.4年。
2. 2 Snowflake – 工作机器id
严格意义上来说这个bit段的使用可以是进程级,机器级的话你可以使用MAC地址来唯一标示工作机器,工作进程级可以使用IP+Path来区分工作进程。如果工作机器比较少,可以使用配置文件来设置这个id是一个不错的选择,如果机器过多配置文件的维护是一个灾难性的事情。
这里的解决方案是需要一个工作id分配的进程,可以使用自己编写一个简单进程来记录分配id,或者利用Mysql auto_increment机制也可以达到效果。
工作进程与工作id分配器只是在工作进程启动的时候交互一次,然后工作进程可以自行将分配的id数据落文件,下一次启动直接读取文件里的id使用。
PS:这个工作机器id的bit段也可以进一步拆分,比如用前5个bit标记进程id,后5个bit标记线程id之类:D
2.3 Snowflake – 序列号
序列号就是一系列的自增id(多线程建议使用atomic),为了处理在同一毫秒内需要给多条消息分配id,若同一毫秒把序列号用完了,则“等待至下一毫秒”。
uint64_t waitNextMs(uint64_t lastStamp)
{
uint64_t cur = 0;
do {
cur = generateStamp();
} while (cur <= lastStamp);
return cur;
}
总体来说,是一个很高效很方便的GUID产生算法,一个int64_t字段就可以胜任,不像现在主流128bit的GUID算法,即使无法保证严格的id序列性,但是对于特定的业务,比如用做游戏服务器端的GUID产生会很方便。另外,在多线程的环境下,序列号使用atomic可以在代码实现上有效减少锁的密度。
3、Snowflake - 算法实现(Java)
public class IdWorker {
private final long twepoch = 1288834974657L;
private final long workerIdBits = 5L;
private final long datacenterIdBits = 5L;
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
private final long sequenceBits = 12L;
private final long workerIdShift = sequenceBits;
private final long datacenterIdShift = sequenceBits + workerIdBits;
private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private final long sequenceMask = -1L ^ (-1L << sequenceBits);
private long workerId;
private long datacenterId;
private long sequence = 0L;
private long lastTimestamp = -1L;
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
}
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
protected long timeGen() {
return System.currentTimeMillis();
}
public static void main(String[] args) {
IdWorker idWorker = new IdWorker(0, 0);
for (int i = 0; i < 100; i++) {
long id = idWorker.nextId();
System.out.println(id);
}
}
}