时间复杂度:
(1)用大O标记法来表示时间复杂度
当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),简称大O标记法。
(2)时间频度
一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。
(3)时间复杂度
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。
时间复杂度的计算:
1. 计算出基本操作的执行次数T(n)
基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。
2. 计算出T(n)的数量级
求T(n)的数量级,只要将T(n)进行如下一些操作:
忽略常量、低次幂和最高次幂的系数
令f(n)=T(n)的数量级。
3. 用大O来表示时间复杂度
当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。
举例:
一个示例:
int num1, num2;
for(int i=0; i<n; i++){
num1 += 1;
for(int j=1; j<=n; j++){
num2 += num1;
}
}
分析:
1.
语句int num1, num2;的频度为1;
语句i=0;的频度为1;
语句i<n; i++; num1+=1; j=1; 的频度为n;
语句j<=n; j++; num2+=num1;的频度为n*n;
T(n) = 2 + 4n + 3n*n
2. n趋近于无穷大时
忽略掉T(n)中的常量、低次幂和最高次幂的系数
f(n) = n*n = ; T(n) = O()