2020机器学习自编码器(autoencoder)(上)

compression-format.jpg

最近分享了 GAN 生成图片时候,在说到 Generator 如何自力更生不依赖 Discriminator 来生成图片时候我们提及了如何使用 autoencoder 来生成图片。既然说到了 autoencoder(自编码),我们今天就放下 GAN,来说一说这个 autoencoder。

首先 autoencoder 是一种无监督学习机器模型,无需给数据添加标签就可以来进行训练模型来完成任务。

目标

今天目标就是通过一个基于卷积的 autoencoder 实例来说明如何搭建一个 autoencoder 模型来进行图片压缩和对图片进行降噪(去除噪点)。实例采用 keras 来实现,数据集一个叫 notMNIST 手写字母集。

概要

  • 首先我们了解一下 autoencoder(自编码) 这样基于深度学习的降维技术与传统的降维技术有什么区别和改进
  • 接下来会带给大家一个基于卷积实现的 autoencoder(自编码)的实例。内容会很细,包括如何下载数据集,如何加压数据集以及构架模型,选择目标函数,设计优化算法一系列内容。
  • 最后还会带有一个通过 autoencoder 对图片进行去噪点的图片,会了解如何为图片添加噪点,如何训练模型,并用训练好的模型对图片进行降噪。

预计 3 词分享,我们就来个上中下,好的话再来个续

autoencoder(自编码)

在一开始我们就说到了 autoencoder 是一个无监督的机器学习算法。将图片在隐藏空间中进行重构用较少数字来表示图片。这样也就达到对图片压缩或者说加密的效果。


autoencoder_002.png

如图,在图像中最狭窄位置就是对图像的编码。通过对 autoencoder(自动编码器)中网络进行一段时间的训练来实现的对图片压缩。

自动编码器(autoencoder) 与主成分分析(PCA)一样都是一种降维技术。都是使用线性转换将数据从高维投影到低维,并在时保留数据的重要特征前提尽可能地删除一些非必要特征。

不同之处就是自编码器使用非线性变换,而 PCA 是使用线性的变换。

autoencoder_001.png

如上图自编码器具有一个隐藏层(hidden)的输入和输出层。输入层和输出层具有相同数量的神经元。


autoencoder_003.png

如果将 5 个像素值的图像输入到自动编码器中,编码器将其压缩为 hidden(中间层)或 latent space (潜在空间)的 3 个像素值。然后解码器将 3 个值,通过解码重建 5 个像素值。
网络包括两个部分分别是编码器解码器

  • 编码器:这部分网络,的将输入图片通过下采样(池化层)用较少数字来表示图片达到对图片进行压缩效果。hidden(中间层)或 latent space (潜在空间)位置数字量达到最小,这层通常就是称为最大压缩点,通过压缩用较少数字表示图片,这些表示原始输入的数字称为输入的编码

  • 解码器:使用编码进行一层一层进行反卷积来达到重构图像的目标

自动编码器有很多变种,例如卷积自编码器、去噪自编码器、变分式和稀疏式自编码器等。
最后希望大家关注我们微信公众号


wechat.jpeg
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容