奇异值分解(SVD)

最近两天都在看奇异值分解及其在推荐系统和图像压缩方面的应用,这部分知识比较散也比较难理解,看代码不是很好懂,所以通过编学边整理的方式帮助大脑理解这部分知识。


SVD思维导图

奇异值分解是什么

奇异值分解(Singular Value Decomposition,SVD),是一种提取信息的方法。比如有一份记录用户关于餐馆观点的数据,要对其进行处理分析,提取背后的因素,这个因素可能是餐馆的类别,烹饪配料等,然后利用这些因素估计人们对没有去过的餐馆的看法,从而进行推荐,提取这些信息的方法就叫奇异值分解法。

奇异值分解的作用是什么

奇异值分解能够简约数据,去除噪声和冗余数据。其实它说白了也是一种降维方法,将数据映射到低维空间。看到这里其实就会想,它和主成分分析(PCA)有什么联系或者差异呢?奇异值分解和主成分分析一样,也是告诉我们数据中重要特征,奇异值是数据矩阵乘以该矩阵的转置的特征值的平方根(Data*Data^T特征值的平方根)。

奇异值分解的数学原理

前面说的关于奇异值分解是什么,其实是从应用角度上来说的,从数学的角度讲,它就是一种矩阵分解法。

什么是矩阵分解

顾名思义,矩阵分解就是把一个大矩阵分解成易于处理的形式,这种形式可能是两个或多个矩阵的乘积,就如同我们在代数中的因子分解,这种因子分解在数学里便于我们计算,赋予现实的含义,给一个真实的应用背景,就能方便我们解决生活中遇到的问题。

SDV是如何分解矩阵的

SVD分解矩阵图

SVD将原始的数据集矩阵Data分解成三个矩阵:U、Sigma、VT,如果原始矩阵是m行n列,那么U、Sigma和VT分别就是m行m列、m行n列、n行n列。比较值得一提的是矩阵Sigma,该矩阵只有对角元素,其他元素均为0,有一个惯例是:Sigma的对角元素是从大到小排列的。这些对角元素就称为奇异值。在科学和工程中,一直存在一个普遍事实:在某个奇异值的数目r之后,其他的奇异值均置0,也就是我们仅保留r个重要特征,其余特征都是噪声或者冗余特征。那么问题来了,这个r到底是多少勒?如何选取呢?确定要保留的奇异值个数有很多启发式的策略,其中一个典型的做法就是保留矩阵90%的能量信息。为了计算能量信息,将所有的奇异值求平均和,直到累加到总值的90%为止。另一个启发式策略是当矩阵有上万个奇异值时,保留前面的2000个或3000个。其实这两种方法要想为什么的话可能就涉及到繁杂的数学证明了,每一个为什么的地方都有可能有创新点,留着有灵感的时候深入思考吧。

一个用例理解SVD

比如给了一些用户和菜系,如下面的矩阵,这个矩阵的值代表了用户对吃过的菜系的评分,没吃过的评分为0,要给这些用户推荐几个他没吃过的菜系。


用户和菜系

拿到这个问题,最直观的一个思路流程就是:计算菜系的相似度->结合评分->对没吃过的菜系计算预测评分->预测评分排序->推荐前x个菜。
这也是简单版本的推荐系统的程序流程,计算相似度有欧式距离、皮尔逊相关系数和余弦相似度等常用计算方法。SVD做的改进就是将矩阵分解,从数据中构建出一个主题空间,再在该主题空间下计算相似度,提高了推荐效果(但是SVD会降低程序的速度,尤其是大规模数据集中,这一点以后再谈)。
在上例中,对数据矩阵进行SVD处理,会得到两个奇异值。因此,有两个概念或主题与此数据集相关联,比如我们基于每个组的共同特征来命名,可能是美式BBQ和日式食品这二维(这两个维度是我们通过分析数据得到的,在生活中,我们一看那些菜就发现菜是有类型的,我们按照类型定相似度,进行推荐,奇异值是我生活的经验映射在数学空间的一种体现,来自于数学角度的解释,是巧合也是必然),如何将原始数据变换到这二维呢?V^T矩阵会将用户映射到BBQ/日式食品空间,U矩阵会将菜系映射到BBQ/日式食品空间,在这个空间下求的相似度,然后进行后续流程,实现推荐。详细的推荐系统实现会在下一篇中介绍。

在Python中如何使用SVD

Numpy线性代数库中有一个实现SVD的方法,可以直接拿来用。具体SVD是如何用程序实现的我打算专门写一篇程序实现的介绍,也包括比如特征值到底怎么求的等等方法。这里就简介调用方式。

import numpy as np
def load_data():
    return [[0,0,0,2,2],
                [0,0,0,3,3],
                [0,0,0,1,1],
                [1,1,1,0,0],
                [2,2,2,0,0],
                [5,5,5,0,0],
                [1,1,1,0,0]]
data = load_data()
u, sigma, vt = np.linalg.svd(data)
print(sigma)

运行结果如下:

[  9.64365076e+00   5.29150262e+00   8.36478329e-16   6.91811207e-17
   3.04963694e-34]

可以发现前两个值比后三个值大的多,所以可以取这两个奇异值,把其余三个置0。对于Sigma矩阵为什么长成行向量的样子,是Python内部的机制,为了节省空间,因为它除了对角线都是0,记着Sigma是个矩阵就好。

具体的推荐系统和详细代码解析我会在下一篇中介绍,还在理解和实验当中。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 200,527评论 5 470
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,314评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 147,535评论 0 332
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,006评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,961评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,220评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,664评论 3 392
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,351评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,481评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,397评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,443评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,123评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,713评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,801评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,010评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,494评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,075评论 2 341

推荐阅读更多精彩内容