无标题文章

High Dynamic Range Imaging {#tutorial_hdr_imaging}==========================Introduction------------Today most digital images and imaging devices use 8 bits per channel thus limiting the dynamic rangeof the device to two orders of magnitude (actually 256 levels), while human eye can adapt tolighting conditions varying by ten orders of magnitude. When we take photographs of a real worldscene bright regions may be overexposed, while the dark ones may be underexposed, so we can’tcapture all details using a single exposure. HDR imaging works with images that use more that 8 bitsper channel (usually 32-bit float values), allowing much wider dynamic range.There are different ways to obtain HDR images, but the most common one is to use photographs of thescene taken with different exposure values. To combine this exposures it is useful to know yourcamera’s response function and there are algorithms to estimate it. After the HDR image has beenblended it has to be converted back to 8-bit to view it on usual displays. This process is calledtonemapping. Additional complexities arise when objects of the scene or camera move between shots,since images with different exposures should be registered and aligned.In this tutorial we show how to generate and display HDR image from an exposure sequence. In ourcase images are already aligned and there are no moving objects. We also demonstrate an alternativeapproach called exposure fusion that produces low dynamic range image. Each step of HDR pipeline canbe implemented using different algorithms so take a look at the reference manual to see them all.Exposure sequence-----------------![](images/memorial.png)Source Code-----------@include cpp/tutorial_code/photo/hdr_imaging/hdr_imaging.cppExplanation------------#  **Load images and exposure times**    @code{.cpp}    vectorimages;    vectortimes;    loadExposureSeq(argv[1], images, times);    @endcode    Firstly we load input images and exposure times from user-defined folder. The folder should    contain images and *list.txt* - file that contains file names and inverse exposure times.    For our image sequence the list is following:    @code{.none}    memorial00.png 0.03125    memorial01.png 0.0625    ...    memorial15.png 1024    @endcode-#  **Estimate camera response**    @code{.cpp}    Mat response;    Ptrcalibrate = createCalibrateDebevec();    calibrate->process(images, response, times);    @endcode    It is necessary to know camera response function (CRF) for a lot of HDR construction algorithms.    We use one of the calibration algorithms to estimate inverse CRF for all 256 pixel values.-#  **Make HDR image**@code{.cpp}Mat hdr;Ptrmerge_debevec = createMergeDebevec();merge_debevec->process(images, hdr, times, response);@endcodeWe use Debevec's weighting scheme to construct HDR image using response calculated in the previousitem.-#  **Tonemap HDR image**    @code{.cpp}    Mat ldr;    Ptrtonemap = createTonemapDurand(2.2f);    tonemap->process(hdr, ldr);    @endcode    Since we want to see our results on common LDR display we have to map our HDR image to 8-bit range    preserving most details. It is the main goal of tonemapping methods. We use tonemapper with    bilateral filtering and set 2.2 as the value for gamma correction.-#  **Perform exposure fusion**    @code{.cpp}    Mat fusion;    Ptrmerge_mertens = createMergeMertens();

merge_mertens->process(images, fusion);

@endcode

There is an alternative way to merge our exposures in case when we don't need HDR image. This

process is called exposure fusion and produces LDR image that doesn't require gamma correction. It

also doesn't use exposure values of the photographs.

-#  **Write results**

@code{.cpp}

imwrite("fusion.png", fusion * 255);

imwrite("ldr.png", ldr * 255);

imwrite("hdr.hdr", hdr);

@endcode

Now it's time to look at the results. Note that HDR image can't be stored in one of common image

formats, so we save it to Radiance image (.hdr). Also all HDR imaging functions return results in

[0, 1] range so we should multiply result by 255.

Results

-------

### Tonemapped image

![](images/ldr.png)

### Exposure fusion

![](images/fusion.png)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容