Q1:什么是防抖和节流?有什么区别?如何实现?
防抖:触发高频事件后n秒内函数只会执行一次,如果n秒内高频事件再次被触发,则重新计算时间。实现原理就是利用定时器,函数第一次执行时设定一个定时器,之后调用时发现已经设定过定时器就清空之前的定时器,并重新设定一个新的定时器,如果存在没有被清空的定时器,当定时器计时结束后触发函数执行。
function debounce(fn) {
let timeout = null; // 创建一个标记用来存放定时器的返回值
return function () {
clearTimeout(timeout); // 每当用户输入的时候把前一个 setTimeout clear 掉
timeout = setTimeout(() => { // 然后又创建一个新的 setTimeout, 这样就能保证输入字符后的 interval 间隔内如果还有字符输入的话,就不会执行 fn 函数
fn.apply(this, arguments);
}, 500);
};
}
function sayHi() {
console.log('防抖成功');
}
var inp = document.getElementById('inp');
inp.addEventListener('input', debounce(sayHi)); // 防抖
节流:函数节流指的是某个函数在一定时间间隔内(例如 3 秒)只执行一次,在这 3 秒内 无视后来产生的函数调用请求,也不会延长时间间隔。3 秒间隔结束后第一次遇到新的函数调用会触发执行,然后在这新的 3 秒内依旧无视后来产生的函数调用请求,以此类推。
function throttle(fn) {
let canRun = true; // 通过闭包保存一个标记
return function () {
if (!canRun) return; // 在函数开头判断标记是否为true,不为true则return
canRun = false; // 立即设置为false
setTimeout(() => { // 将外部传入的函数的执行放在setTimeout中
fn.apply(this, arguments);
// 最后在setTimeout执行完毕后再把标记设置为true(关键)表示可以执行下一次循环了。当定时器没有执行的时候标记永远是false,在开头被return掉
canRun = true;
}, 500);
};
}
function sayHi(e) {
console.log(e.target.innerWidth, e.target.innerHeight);
}
window.addEventListener('resize', throttle(sayHi));
节流的例子:eshop滚动的时候监听页面是否滚动到所处的高度值。
Q2:介绍下 Set、Map、WeakSet 和 WeakMap 的区别
Set 和 Map 主要的应用场景在于 数据重组 和 数据储存。Set 是一种叫做集合的数据结构,Map 是一种叫做字典的数据结构.Set是一种构造函数。
比较相等的方法是'Same-value-zero equality'。
WeakSet 对象允许你将弱引用对象储存在一个集合中。
WeakSet 只能储存对象引用,不能存放值,而 Set 对象都可以
WeakSet 对象中储存的对象值都是被弱引用的,即垃圾回收机制不考虑 WeakSet 对该对象的应用,如果没有其他的变量或属性引用这个对象值,则这个对象将会被垃圾回收掉(不考虑该对象还存在于 WeakSet 中),所以,WeakSet 对象里有多少个成员元素,取决于垃圾回收机制有没有运行,运行前后成员个数可能不一致,遍历结束之后,有的成员可能取不到了(被垃圾回收了),WeakSet 对象是无法被遍历的(ES6 规定 WeakSet 不可遍历),也没有办法拿到它包含的所有元素。(看起来没啥用)
Map
共同点:集合、字典 可以储存不重复的值
不同点:集合 是以 [value, value]的形式储存元素,字典 是以 [key, value] 的形式储存。
const map = new Map();
map.set(['a'], 555);
map.get(['a']) // undefined
Map 的键实际上是跟内存地址绑定的,只要内存地址不一样,就视为两个键。
WeakMap 对象是一组键值对的集合,其中的键是弱引用对象,而值可以是任意。
注意,WeakMap 弱引用的只是键名,而不是键值。键值依然是正常引用。
Set
成员唯一、无序且不重复
[value, value],键值与键名是一致的(或者说只有键值,没有键名)
可以遍历,方法有:add、delete、has
WeakSet
成员都是对象
成员都是弱引用,可以被垃圾回收机制回收,可以用来保存DOM节点,不容易造成内存泄漏
不能遍历,方法有add、delete、has
Map
本质上是键值对的集合,类似集合
可以遍历,方法很多可以跟各种数据格式转换
WeakMap
只接受对象作为键名(null除外),不接受其他类型的值作为键名
键名是弱引用,键值可以是任意的,键名所指向的对象可以被垃圾回收,此时键名是无效的
不能遍历,方法有get、set、has、delete
Q3: Async/Await 如何通过同步的方式实现异步
async/await 是参照 Generator 封装的一套异步处理方案,可以理解为 Generator 的语法糖。而 Generator 又依赖于迭代器Iterator,而 Iterator 的思想呢又来源于单向链表。
链表是一种线性表,但是并不会按线性的顺序储存数据,而是在每一个节点里存到下一个节点的指针。
单向链表的思想: 链表中最简单的一种,它包含两个域,一个信息域和一个指针域。这个链接指向列表中的下一个节点,而最后一个节点则指向一个空值。
迭代器协议:产生一个有限或无限序列的值,并且当所有的值都已经被迭代后,就会有一个默认的返回值。一个对象要变成可迭代的,必须实现 @@iterator 方法,即对象(或它原型链上的某个对象)必须有一个名字是 Symbol.iterator 的属性
const returnData = arr => {
let nextIndex = 0;
return {
next: nextIndex < arr.length
? {value: arr[nextIndex++], done: false}
: {value:undefined, done: true}
}
}
const arr = ['星月','神话']
const it = returnData(arr);
it.next() --> 星月
it.next() ---> 神话
调用一个生成器函数并不会马上执行它里面的语句,而是返回一个这个生成器的迭代器对象,当这个迭代器的 next() 方法被首次(后续)调用时,其内的语句会执行到第一个(后续)出现 yield 的位置为止(让执行处于暂停状),yield 后紧跟迭代器要返回的值。或者如果用的是 yield*(多了个星号),则表示将执行权移交给另一个生成器函数(当前生成器暂停执行),调用 next() (再启动)方法时,如果传入了参数,那么这个参数会作为上一条执行的 yield 语句的返回值
const promisify = require('util').promisify;
const path = require('path');
const fs = require('fs');
const readFile = promisify(fs.readFile);
function run(gen) {
const g = gen();
function next(data) {
const res = g.next(data);
// 深度递归,只要 `Generator` 函数还没执行到最后一步,`next` 函数就调用自身
if (res.done) return res.value;
res.value.then(function(data) {
next(data);
});
}
next();
}
run(function*() {
const res1 = yield readFile(path.resolve(__dirname, '../data/a.json'), { encoding: 'utf8' });
console.log(res1);
// {
// "a": 1
// }
const res2 = yield readFile(path.resolve(__dirname, '../data/b.json'), { encoding: 'utf8' });
console.log(res2);
// {
// "b": 2
// }
});
// Generator
run(function*() {
const res1 = yield readFile(path.resolve(__dirname, '../data/a.json'), { encoding: 'utf8' });
console.log(res1);
const res2 = yield readFile(path.resolve(__dirname, '../data/b.json'), { encoding: 'utf8' });
console.log(res2);
});
// async/await
const readFile = async ()=>{
const res1 = await readFile(path.resolve(__dirname, '../data/a.json'), { encoding: 'utf8' });
console.log(res1);
const res2 = await readFile(path.resolve(__dirname, '../data/b.json'), { encoding: 'utf8' });
console.log(res2);
return 'done';
}
const res = readFile();
当 await 后面跟的是 Promise 对象时,才会异步执行,其它类型的数据会同步执行。并且返回的仍然是一个promise对象
Q4:Promise 构造函数是同步执行还是异步执行,那么 then 方法呢?
const promise = new Promise((resolve, reject) => {
console.log(1)
resolve()
console.log(2)
})
promise.then(() => {
console.log(3)
})
console.log(4)
执行结果是:1,2,4,3 promise顺序放在微队列里面,settimeOut任务是宏任务
Q5: 简单讲解一下http2的多路复用
在 HTTP/1 中,每次请求都会建立一次HTTP连接,也就是我们常说的3次握手4次挥手,这个过程在一次请求过程中占用了相当长的时间,即使开启了 Keep-Alive ,解决了多次连接的问题,但是依然有两个效率上的问题:
第一个:串行的文件传输。当请求a文件时,b文件只能等待,等待a连接到服务器、服务器处理文件、服务器返回文件,这三个步骤。我们假设这三步用时都是1秒,那么a文件用时为3秒,b文件传输完成用时为6秒,依此类推。(注:此项计算有一个前提条件,就是浏览器和服务器是单通道传输)
第二个:连接数过多。我们假设Apache设置了最大并发数为300,因为浏览器限制,浏览器发起的最大请求数为6,也就是服务器能承载的最高并发为50,当第51个人访问时,就需要等待前面某个请求处理完成。
HTTP/2的多路复用就是为了解决上述的两个性能问题。 在 HTTP/2 中,有两个非常重要的概念,分别是帧(frame)和流(stream)。 帧代表着最小的数据单位,每个帧会标识出该帧属于哪个流,流也就是多个帧组成的数据流。 多路复用,就是在一个 TCP 连接中可以存在多条流。换句话说,也就是可以发送多个请求,对端可以通过帧中的标识知道属于哪个请求。通过这个技术,可以避免 HTTP 旧版本中的队头阻塞问题,极大的提高传输性能。