3.14-Elasticsearch聚合分析简介

什么是聚合(Aggregation)

  • ElasticSearch除搜索以外,提供针对ES数据进行分析的功能

    • 实时性高

    • Hadoop (T+1)

  • 通过聚合,我们会得到一个数据的概览, 是分析和总结全套的数据,而不是寻找单个文档

  • 高性能,只需要一条语句,就可以从ElasticSearch得到分析结果

    • 无需在客户端自己去实现分析逻辑

Kibana可视化报表 - 聚合分析

image.png
  • 公司程序员的工作岗位分布

  • 公司采用的编程框架分布

  • 公司员工薪水分布

  • 客户的地理位置分布

  • 订单的增长情况

  • 等等...

集合的分类

  • Bucket Aggregation - 一些列满足特定条件的文档的集合

  • Metric Aggregation - 一些数学运算,可以对文档字段进行统计分析

  • Pipeline Aggregation - 对其他的聚合结果进行二次聚合

  • Matrix Aggregation - 支持对多个字段的操作并提供一个结果矩阵

Bucket & Metric

image.png

Bucket

image.png
  • 一些例子

    • 杭州属于浙江 / 一个演员属于男性或女性

    • 嵌套关系 - 杭州属于浙江属于中国属于亚洲

  • ElasticSearch提供了很多类型的Bucket,帮助你用多种方式划分文档

    • Term&Range (时间/年龄区间/地理)

Metric

  • Metric会基于数据计算结果,除了支持在字段上进行计算,同样也支持在脚本(painless script)产生的结果之上进行计算

  • 大多数Metric是数学计算,仅输出一个值

    • min/max/sum/avg/cardinality
  • 部分metric支持输出多个数值

    • stats/precentiles/percentile_rank

一个Bucket的例子

查看航班目的地的统计信息


image.png

加入Metrics

查看航班上的地的统计信息,增加均价,最高最低价格


image.png

嵌套

查看航班上的地的统计信息,平均票价,以及天气状况


image.png

课程Demo

  • 需要通过Kibana导入Sample Data的飞机航班数据。具体参考“2.2节-Kibana的安装与界面快速浏览”
#按照目的地进行分桶统计
GET kibana_sample_data_flights/_search
{
    "size": 0,
    "aggs":{
        "flight_dest":{
            "terms":{
                "field":"DestCountry"
            }
        }
    }
}



#查看航班目的地的统计信息,增加平均,最高最低价格
GET kibana_sample_data_flights/_search
{
    "size": 0,
    "aggs":{
        "flight_dest":{
            "terms":{
                "field":"DestCountry"
            },
            "aggs":{
                "avg_price":{
                    "avg":{
                        "field":"AvgTicketPrice"
                    }
                },
                "max_price":{
                    "max":{
                        "field":"AvgTicketPrice"
                    }
                },
                "min_price":{
                    "min":{
                        "field":"AvgTicketPrice"
                    }
                }
            }
        }
    }
}



#价格统计信息+天气信息
GET kibana_sample_data_flights/_search
{
    "size": 0,
    "aggs":{
        "flight_dest":{
            "terms":{
                "field":"DestCountry"
            },
            "aggs":{
                "stats_price":{
                    "stats":{
                        "field":"AvgTicketPrice"
                    }
                },
                "wather":{
                  "terms": {
                    "field": "DestWeather",
                    "size": 5
                  }
                }

            }
        }
    }
}

相关阅读

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345