1. 齐次
事实上带齐次的概念很多,纯粹要说“齐次”的含义的话,似乎比较抽象难懂,所以我觉得给出一个具体的齐次的东西来解释可能会更好一点。
下面我要解释的齐次坐标(homogeneous coordinates)是我所熟悉的计算机视觉和图形学这两个领域中经常要用到的概念,同时,坐标也是一般人都可以理解的东西。
2. 线性
再来说说“线性”。和“齐次”类似,带“线性”的概念也很多,下面我也会给出一个具体的线性的东西来解释,以防过于抽象。
“线性变换”(Linear Transformation)同样是计算机视觉和图形学中经常用到的东西。通常,我们会用一个矩阵来表示一个线性变换,对于二维空间中的线性变换,我们经常用3x3的矩阵来表示。当给定一个线性变换矩阵之后,我们把它和一个齐次坐标一乘就可以得到经过变换后的齐次坐标了。
那么为什么我们要管这种变换叫线性变换而不是弯性变换呢?这里抛开线性的数学定义不说,线性变换有一个重要的性质,非常形象地表达了这一概念,即保共线性(我记不清是不是叫这个名字了,望指正)。具体地说就是,在线性变换之前处于同一条直线上的3个点,经过线性变换之后必定还处于同一条直线上。换句话说,如果你画了一条直线,这条直线在经过线性变换之后它必定还是一条直线。
所以说,线性变换最喜欢直线了,除了直线以外的东西,比如角,在经过线性变换之后可能就完全不一样了,此外,还有长度、面积、平行等等,线性变换都不喜欢,不保证它们在变换之后还能维持原样。