知识点
-
动量的直观感受
- 碰撞模型
- 匀速圆周运动的模型
-
角动量的直观感受
- 圆周运动速度变化的模型
-
质点的角动量
-
质点对原点O的角动量
- 方向:两个矢量的起点在同一点,根据右手螺旋定则,由弯向,则大拇指指向的方向是的方向。
- 大小:(两者夹角)
-
例子:匀速圆周运动的角动量
-
例子:一般运动的角动量(径向运动,切向运动)
-
简单组合体的角动量
-
刚体的角动量
1.刚体:在任何力的作用下,体积和形状都不发生改变的物体叫做刚体,即各位置的角速度相同。- 转动惯量转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动的量度),用字母I或J表示。在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I 或J表示,SI 单位为 kg·m²。对于一个质点,I = mr²,其中 m 是其质量,r 是质点和转轴的垂直距离。转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。
类比法理解平动与转动
表达题
- 努力建立直观图像比记忆公式更能培养你的能力。“角动量的大小”代表转动的趋势:角动量越大,代表转动趋势越大;角动量为零,代表没有转动。则图中,角动量最大的运动(这四个速度,大小相等、方向不同)是
解答:把速度沿着法向(半径方向)和切向(转动方向)分解,切向分量代表转动。
- 角动量的数学定义是。(1)直观法:先找到转动趋势的方向,拿出右手,按照转动的方向握好,大拇指的方向就是角动量的方向。(2)矢量叉乘法:首先,和构成了一个平面,的方向必然垂直于该平面。拿出左手,四指从到握过去(锐角),大拇指的方向就是角动量的方向。关于这些说法,正确的是
解答:右手!右手!右手!重要的事情说三遍。
- 角动量比动量更便于描述圆周运动。在匀速率圆周运动中,快速计算下,随着时间的变化,动量变化吗?角动量呢?
解答:动量变化,角动量不变。
- 某质量为的质点做圆周运动,半径为,速率为,则角动量的大小为
解答:角动量的数学定义:
矢量互相垂直 大小为:
- 请借助与平动类比:平动的动量为质量和速度之积。某刚体的转动惯量为,角速度为,则角动量的大小、转动动能的大小(请借助类比法猜测)分别为
解答:平动:质量,速度,动量,动能分别与转动的转动惯量,角速度,角动量,转动动能是对应的。
- 转动惯量的公式是。结合该公式,请思考图中(四个小球质量相同,用轻杆相连,构成一个刚体)各种情形下转动惯量的大小
解答:转动惯量的大小与各个质元与轴的距离有关。质量分布离轴越远,转动惯量越大。
-
关于刚体对轴的转动惯量,下列说法中正确的是
只取决于刚体的质量,与质量的空间分布和轴的位置无关
取决于刚体的质量和质量的空间分布,与轴的位置无关;
取决于刚体的质量、质量的空间分布和轴的位置
只取决于转轴的位置,与刚体的质量和质量的空间分布无关。
解答: C