什么是拜占庭将军问题?

在很久很久以前,拜占庭是东罗马帝国的首都。那个时候罗马帝国国土辽阔,为了防御目的,因此每个军队都分隔很远,将军与将军之间只能靠信使传递消息。

在打仗的时候,拜占庭军队内所有将军必需达成一致的共识,才能更好地赢得胜利。但是,在军队内有可能存有叛徒,扰乱将军们的决定。

这时候,在已知有成员不可靠的情况下,其余忠诚的将军需要在不受叛徒或间谍的影响下达成一致的协议。

莱斯利·兰伯特( Leslie Lamport )通过这个比喻,表达了计算机网络中所存在的一致性问题。这个问题被称为拜占庭将军问题

如何解决拜占庭将军问题,目前业界有很多成熟的解决方案,其中[Raft算法]是比较具有代表性的,又比较好理解的算法。

什么是 Raft 算法?

Raft 算法是一种简单易懂的共识算法。它依靠状态机  主从同步的方式,在各个节点之间实现数据的一致性。

在学习Raft算法的时候,大家需要了解Raft的两个核心要点:

1.选取主节点

2.同步数据

不难理解,使用主从同步的方式,可以让集群各个节点的数据更新以主节点为准,从而保证了一致性。那么,如何选取主节点呢?

Raft算法在选择主节点的过程中,也是通过多个节点之间的投票竞争

说到这里,不得不说一下Raft算法的状态机。Raft算法为节点定义了三种角色:

1.Leader(主节点)

2.Follower(从节点)

3.Candidate(参与投票竞争的节点)

让我们来看一看选主的具体流程:

第一步,在最初,还没有一个主节点的时候,所有节点的身份都是Follower。每一个节点都有自己的计时器,当计时达到了超时时间(Election Timeout),该节点会转变为Candidate。

第二步,成为Candidate的节点,会首先给自己投票,然后向集群中其他所有的节点发起请求,要求大家都给自己投票。


第三步,其他收到投票请求且还未投票的Follower节点会向发起者投票,发起者收到反馈通知后,票数增加。


第四步,当得票数超过了集群节点数量的一半,该节点晋升为Leader节点。Leader节点会立刻向其他节点发出通知,告诉大家自己才是老大。收到通知的节点全部变为Follower,并且各自的计时器清零。


这里需要说明一点,每个节点的超时时间都是不一样的。比如A节点的超时时间是3秒,B节点的超时时间是5秒,C节点的超时时间是4秒。这样一来,A节点将会最先发起投票请求,而不是所有节点同时发起。

为什么这样设计呢?设想如果所有节点同时发起投票,必然会导致大家的票数差不多,形成僵局,谁也当不成老大。

那么,成为Leader的节点是否就坐稳了老大的位置呢?并不是。Leader节点需要每隔一段时间向集群其他节点发送心跳通知,表明你们的老大还活着。

一旦Leader节点挂掉,发不出通知,那么计时达到了超时时间的Follower节点会转变为Candidate节点,发起选主投票,周而复始......

让我们来看一看数据同步的流程:

第一步,由客户端提交数据到Leader节点。

第二步,由Leader节点把数据复制到集群内所有的Follower节点。如果一次复制失败,会不断进行重试。

第三步,Follower节点们接收到复制的数据,会反馈给Leader节点。

第四步,如果Leader节点接收到超过半数的Follower反馈,表明复制成功。于是提交自己的数据,并通知客户端数据提交成功。

第五步,由Leader节点通知集群内所有的Follower节点提交数据,从而完成数据同步流程。

共识算法的应用场景?

在用于共享配置和服务发现的K-V存储系统[etcd]中,使用的就是Raft算法来保证分布式的一致性。

还有其他算法,如下:

Paxos 算法:

早期的共识算法,由拜占庭将军问题的提出者Leslie Lamport 所发明。谷歌的分布式锁服务 Chubby 就是以 Paxos 算法为基础。

ZAB 算法:

Zookeeper 所使用的一致性算法,在流程上和 Raft 算法比较接近。

PBFT 算法:

区块链技术所使用的共识算法之一,适用于私有链的共识。

转载:程序员小灰

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,711评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,932评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,770评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,799评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,697评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,069评论 1 276
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,535评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,200评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,353评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,290评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,331评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,020评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,610评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,694评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,927评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,330评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,904评论 2 341

推荐阅读更多精彩内容