本文结构
背景
源码
思考
问题
背景
最近写go,看到学习一些go源码记录上,另外相关依赖代码这里简单说明一下
读写锁
概念去搜一下就好,可以上多个读锁,一个写锁
上写锁时要等之前的读锁释放
代码前提
信号量的获取与释放,看注释就够了,这个是runtime的
// Semacquire waits until *s > 0 and then atomically decrements it.
// It is intended as a simple sleep primitive for use by the synchronization
// library and should not be used directly.
func runtime_Semacquire(s *uint32)
// Semrelease atomically increments *s and notifies a waiting goroutine
// if one is blocked in Semacquire.
// It is intended as a simple wakeup primitive for use by the synchronization
// library and should not be used directly.
// If handoff is true, pass count directly to the first waiter.
func runtime_Semrelease(s *uint32, handoff bool)
源码
变量
w Mutex 互斥锁
writerSem uint32 写锁信号量
readerSem uint32 读锁信号量
readerCount int32 还未释放读锁的reader数量(偏差2^30,有write就是原有reader数量-2^30)
readerWait int32 写锁要等待的reader数量(之前的reader释放了锁,writer才能跑)
源码
下面的源码没有分析锁竞争(非公平锁)相关代码逻辑
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sync
import (
"internal/race"
"sync/atomic"
"unsafe"
)
// There is a modified copy of this file in runtime/rwmutex.go.
// If you make any changes here, see if you should make them there.
// A RWMutex is a reader/writer mutual exclusion lock.
// The lock can be held by an arbitrary number of readers or a single writer.
// The zero value for a RWMutex is an unlocked mutex.
//
// A RWMutex must not be copied after first use.
//
// If a goroutine holds a RWMutex for reading and another goroutine might
// call Lock, no goroutine should expect to be able to acquire a read lock
// until the initial read lock is released. In particular, this prohibits
// recursive read locking. This is to ensure that the lock eventually becomes
// available; a blocked Lock call excludes new readers from acquiring the
// lock.
type RWMutex struct {
w Mutex // held if there are pending writers 互斥锁
writerSem uint32 // semaphore for writers to wait for completing readers 写锁信号量
readerSem uint32 // semaphore for readers to wait for completing writers 读锁信号量
readerCount int32 // number of pending readers 还未释放读锁的reader数量(偏差2^30,有write就是原有reader数量-2^30)
readerWait int32 // number of departing readers 写锁要等待的reader数量(之前的reader释放了锁,writer才能跑)
}
const rwmutexMaxReaders = 1 << 30 //假定最多2^30个reader
// RLock locks rw for reading.
//
// It should not be used for recursive read locking; a blocked Lock
// call excludes new readers from acquiring the lock. See the
// documentation on the RWMutex type.
func (rw *RWMutex) RLock() { //读锁
if race.Enabled {
_ = rw.w.state
race.Disable()
}
if atomic.AddInt32(&rw.readerCount, 1) < 0 { //当前有写锁了
// A writer is pending, wait for it.
runtime_Semacquire(&rw.readerSem) //等待reader信号量
}
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(&rw.readerSem))
}
}
// RUnlock undoes a single RLock call;
// it does not affect other simultaneous readers.
// It is a run-time error if rw is not locked for reading
// on entry to RUnlock.
func (rw *RWMutex) RUnlock() { //释放写锁
if race.Enabled {
_ = rw.w.state
race.ReleaseMerge(unsafe.Pointer(&rw.writerSem))
race.Disable()
}
if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 { //reader数量-1,如果<0的话
if r+1 == 0 || r+1 == -rwmutexMaxReaders { //如果已经没有读锁的,还去释放(如释放多次)
race.Enable()
throw("sync: RUnlock of unlocked RWMutex")
}
// A writer is pending. 下面的情况代表有写锁
if atomic.AddInt32(&rw.readerWait, -1) == 0 { //写锁的reader wait数量-1
// The last reader unblocks the writer.
runtime_Semrelease(&rw.writerSem, false)//如果wait数量到0,释放writer信号量
}
}
if race.Enabled {
race.Enable()
}
}
// Lock locks rw for writing.
// If the lock is already locked for reading or writing,
// Lock blocks until the lock is available.
func (rw *RWMutex) Lock() {
if race.Enabled {
_ = rw.w.state
race.Disable()
}
// First, resolve competition with other writers.
rw.w.Lock() //上互斥锁
// Announce to readers there is a pending writer.
r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders //readerCount变成负数,代表有写锁,r就是计算前readCount的绝对值(存疑,atomic计算)
// Wait for active readers.
if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 {//当前readCount不为0,并且上一步r计算之后RUnlock的次数和之前readerCount相同(上一步计算后可能有多次RUnlock,readerWait会变成负数)
runtime_Semacquire(&rw.writerSem)//等待writer信号量
}
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(&rw.readerSem))
race.Acquire(unsafe.Pointer(&rw.writerSem))
}
}
// Unlock unlocks rw for writing. It is a run-time error if rw is
// not locked for writing on entry to Unlock.
//
// As with Mutexes, a locked RWMutex is not associated with a particular
// goroutine. One goroutine may RLock (Lock) a RWMutex and then
// arrange for another goroutine to RUnlock (Unlock) it.
func (rw *RWMutex) Unlock() {
if race.Enabled {
_ = rw.w.state
race.Release(unsafe.Pointer(&rw.readerSem))
race.Release(unsafe.Pointer(&rw.writerSem))
race.Disable()
}
// Announce to readers there is no active writer.
r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders)//readerCount + 2^30变成正数
if r >= rwmutexMaxReaders {//释放写锁多次
race.Enable()
throw("sync: Unlock of unlocked RWMutex")
}
// Unblock blocked readers, if any.
for i := 0; i < int(r); i++ {//发送多次reader信号量
runtime_Semrelease(&rw.readerSem, false)
}
// Allow other writers to proceed.
rw.w.Unlock()
if race.Enabled {
race.Enable()
}
}
// RLocker returns a Locker interface that implements
// the Lock and Unlock methods by calling rw.RLock and rw.RUnlock.
func (rw *RWMutex) RLocker() Locker {
return (*rlocker)(rw)
}
type rlocker RWMutex
func (r *rlocker) Lock() { (*RWMutex)(r).RLock() }
func (r *rlocker) Unlock() { (*RWMutex)(r).RUnlock() }
思考
如何区分当前是被读锁还是写锁占有
readerCount>0则是读锁,<0则是写锁
整体思路
通过readerCount和readerWait进行计算
对读写锁的获取进行判断,是否等待reader或者writer信号量
对读写锁的释放也进行判断,释放reader以及writer相关信号量
多次调用写锁不会成功的原理
里面有rw.w.lock(),这个是互斥锁,释放写锁的时候释放这个互斥锁
获取写锁里面if的第二个判断逻辑何时生效
在上面计算r之后,readerCount可能变化了,即再计算r之后,其他线程又执行了Rlock和Runlock,并且整体Runlock次数>Rlock次数,就有可能出现readerWait为负数了
考虑场景
1.计算r,当前readerCount为1,r为1,计算后readerCount为1-2^30
2.Runlock一次,readerCount为-2^30,满足下面条件
3.此时readerWait设置成-1
4.Lock里面,计算if条件,第一个条件r!=0(满足) 第二个条件readerWait=-1,r=1,相加为0,满足条件,不用处理
问题
代码假定最多有2^30个readers
所以代码里面readerCount在写模式会-2^30
如何和java读写锁比较
印象里面java里面是有AQS队列,公平非公平锁的概念更清晰,并且记录了队列结构