FCN的理解

论文地址

开源代码地址

接下来进入正文。

FCN是语义分割的鼻祖,在他出来之前像素级别的分割是个解决不了的问题。

FCN 的核心点

我们以Alexnet为例,他是把最后的三个全连接层都改成了卷积层,也是让网络从原来的标签信息,上升到了二维的图像,又通过最后的上采样也就是转置卷积,把最后的feature map(fcn中叫做heatmap)放到原来的倍数。

在传统的cnn网络模型中

通常cnn网络在卷积之后会接上若干个全连接层,将卷积层产生的特征图(feature map)映射成为一个固定长度的特征向量。一般的CNN结构适用于图像级别的分类和回归任务,因为它们最后都期望得到输入图像的分类的概率,如ALexNet网络最后输出一个1000维的向量表示输入图像属于每一类的概率。

与传统的cnn网络的

FCN对图像进行像素级的分类,从而解决了语义级别的图像分割问题。与经典的CNN在卷积层使用全连接层得到固定长度的特征向量进行分类不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷基层的特征图(feature map)进行上采样,使它恢复到输入图像相同的尺寸,从而可以对每一个像素都产生一个预测,同时保留了原始输入图像中的空间信息,最后奇偶在上采样的特征图进行像素的分类。
全卷积网络(FCN)是从抽象的特征中恢复出每个像素所属的类别。即从图像级别的分类进一步延伸到像素级别的分类。

FCN与传统CNN网络的对比

至于两者的区别

  • 就是FCN把CNN后边的全连接换成了卷积层,并输出一张已经label好的图

在网络结构中

FCN的网络结构

全卷积提取特征

虚线上半部分为全卷积网络。(蓝:卷积,绿:max pooling)。对于不同尺寸的输入图像,各层数据的尺寸(height,width)相应变化,深度(channel)不变。
这部分由深度学习分类问题中经典网络AlexNet1修改而来。只不过,把最后两个全连接层(fc)改成了卷积层。

在论文中是基于vgg16的模型精度是最高的。
但是图中截取的是Alexnet的网络为主干进行改进的FCN

逐像素的预测

例如
第一个预测模块
输入16*16*4096,卷积模板尺寸1*1,输出16*16*21

相当于对每个像素施加一个全连接层,从4096维特征,预测21类结果。

怎么具体逐像素点预测分类的:

采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。

具体过程:
经过多次卷积和pooling以后,得到的图像越来越小,分辨率越来越低。其中图像到

过程

最后的输出是21张heatmap经过upsampling变为原图大小的图片,为了对每个像素进行分类预测label成最后已经进行语义分割的图像

这里有一个小trick,就是最后通过逐个像素地求其在21张图像该像素位置的最大数值描述(概率)作为该像素的分类。因此产生了一张已经分类好的图片,如下图右侧有狗狗和猫猫的图。

反卷积

这个在其他章节中讲过

跳级链接

看到FCN的跳级连接我想到的就是FPN的结构,当然感觉FPN应该是借鉴这里的,不过他是最终融合了一张feature map 也就结合了低级的语义信息和高层抽象结果。

如下图所示:对原图进行卷积conv1、pool1后图像缩小为1/2;对图像进行第二次卷积conv2、pool2后图像缩小为1/4;对图像进行第三次卷积conv3、pool3后图像缩小为1/8,此时保留pool3的featuremap;对图像进行第四次卷积conv4、pool4后图像缩小为1/16,此时保留pool4的featuremap;对图像进行第五次卷积conv5、pool5后图像缩小为1/32,然后把原来CNN操作过程中的全连接编程卷积操作的conv6、conv7,图像的featuremap的大小依然为原图的1/32,此时图像不再叫featuremap而是叫heatmap。

其实直接使用前两种结构就已经可以得到结果了,这个上采样是通过反卷积(deconvolution)实现的,对第五层的输出(32倍放大)反卷积到原图大小。但是得到的结果还上不不够精确,一些细节无法恢复。于是将第四层的输出和第三层的输出也依次反卷积,分别需要16倍和8倍上采样,结果过也更精细一些了。这种做法的好处是兼顾了local和global信息。

跳层连接

整个训练过程

第一阶段
第一阶段

以经典的分类网络为初始化。最后两级是全连接(红色),参数弃去不用。

第2阶段


从特征小图(16164096)预测分割小图(161621),之后直接升采样为大图。
反卷积(橙色)的步长为32,这个网络称为FCN-32s。
这一阶段使用单GPU训练约需3天。

第三阶段
第三阶段

升采样分为两次完成(橙色×2)。
在第二次升采样前,把第4个pooling层(绿色)的预测结果(蓝色)融合进来。使用跳级结构提升精确性。
第二次反卷积步长为16,这个网络称为FCN-16s。
这一阶段使用单GPU训练约需1天。

第四阶段
第4阶段

升采样分为三次完成(橙色×3)。
进一步融合了第3个pooling层的预测结果。
第三次反卷积步长为8,记为FCN-8s。
这一阶段使用单GPU训练约需1天。

较浅层的预测结果包含了更多细节信息。比较2,3,4阶段可以看出,跳级结构利用浅层信息辅助逐步升采样,有更精细的结果。

4步出来的结果

总体来说,本文的逻辑如下:

  • 想要精确预测每个像素的分割结果
  • 必须经历从大到小,再从小到大的两个过程
  • 在升采样过程中,分阶段增大比一步到位效果更好
  • 在升采样的每个阶段,使用降采样对应层的特征进行辅助
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容