Fibonacci 斐波那契数列的几种写法、时间复杂度对比

斐波那契数列(Fibonacci)最早由印度数学家Gopala提出,第一个真正研究斐波那契数列的是意大利数学家 Leonardo Fibonacci,斐波那契数列的定义很简单,用数学函数可表示为:

数列从0和1开始,之后的数由前两个数相加而得出,例如斐波那契数列的前10个数是:0, 1, 1, 2, 3, 5, 8, 13, 21, 34。

用 Python 实现斐波那契数列常见的写法有三种,各算法的执行效率也有很大差别,在面试中也会偶尔会被问到,通常面试的时候不是让你简单的用递归写写就完了,还会问你时间复杂度怎样,空间复杂度怎样,有没有可改进的地方。

递归法

所谓递归就是指函数的定义中使用了函数自身的方法

def fib_recur(n):    
    assert n >= 0    
    if n in (0, 1):        
        return n    
    return fib_recur(n - 1) + fib_recur(n - 2)

for i in range(20):    
    print(fib_recur(i), end=" ")
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

递归是一种写法最简洁的方法,但它是效率非常低,因为会出现大量的重复计算,时间复杂度是:O(1.618 ^ n),1.618 是黄金分割点。同时受限于 Python 中递归的最大深度是 1000,所以用递归来求解并不是一种可取的办法。

递推法

递推法就是从0和1开始,前两项相加逐个求出第3、第4个数,直到求出第n个数的值

def fib_loop(n):    
    a, b = 0, 1    
    for i in range(n):        
        a, b = b, a + b    
        return a

for i in range(20):    
    print(fib_loop(i), end=" ")
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

这种算法的时间复杂是O(n),呈线性增长,如果数据量巨大,速度越到后面会越慢。

上面两种方式都是使用分而治之的思想,把一个大的问题化小,然后利用小问题的求解得到目标问题的答案。

矩阵法

《线性代数》是大学计算机专业的一门课程,教的就是矩阵,那时候觉得这东西学起来很枯燥,没什么用处,工作后你才发现搞机器学习、数据分析、数据建模时大有用处,书到用时方恨少。其实矩阵的本质就是线性方程式。

斐波那契数列中两个相邻的项分别为:F(n) 和 F(n - 1),如果把这两个数当作一个2行1列的矩阵可表示为:

因为 F(n) = F(n-1)+F(n-2),所以就有:

通过反推,其实它是由两个矩阵的乘积得来的

依此类推:

最后可推出:

因此想要求出F(n)的值,只要能求出右边矩阵的n-1次方的值,最后求得两矩阵乘积,取新矩阵的第一行的第一列的值即可,比如n=3时,

可以得知F(3)的值2,F(2)的值为1,因为幂运算可以使用二分加速,所以矩阵法的时间复杂度为 O(log n)

我们可以用科学计算包 numpy 来实现矩阵法:

import numpy
def fib_matr(n):    
    return (numpy.matrix([[1, 1], [1, 0]]) ** (n - 1) * numpy.matrix([[1], [0]]))[0, 0]

for i in range(20):    
    print(int(fib_matr(i)), end=" ")
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

对比

3中不同的算法效率对比:

从上面图可以看出递归法效率惊人的低,矩阵法在数据量比较大的时候才突显出它的优势,递推法随着数据的变大,所花的时间也越来越大。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容