4. State-Space Planning(2)

Abstraction heuristics --------is admissible (and consistent)

Simplify the problem by ignoring parts of it.

  1. Drop preconditions from actions.
  2. Consider only a subset of predicates/propositions.
  3. Count objects with a given property, ignoring the identity of objects.(eg. count clear boxes)
  4. Ignore so much that the abstract problem is small enough to be solved by uninformed search.
  5. Use memory to avoid repeated searches (pattern databases).

Formal definition
ProblemP′ = (S′,A′,γ′,s′0,SG′ ,c′)isanabstractionofP = (S,A,γ,s0,SG,c) if there exists an abstraction mapping φ : S → S′, then

  1. φ preserves the initial state: φ(s0) = s′0
  2. φ preserves goal states: ifs∈SG thenφ(s)∈SG′
  3. φ preserves transitions:
    if γ(s, a) = t then ∃a′ ∈ A′ γ′(φ(s), a′) = φ(t) with c′(a′) ≤ c(a)

The abstraction heuristic hφ(s, g) induced by φ is given by the the cost of the optimal path from φ(s) to φ(g) in P′

Landmark heuristics

Proposition l is a landmark for problem P iff all plans for P make l true.

Sufficient condition for proposition l to be a landmark for problem P: the delete relaxation P+ is not solvable when l is removed from the add-list of all actions.(一个命题是 landmark 则,如果命题 l 不属于actions list ,那么p+ 不能够被解决)

启发之定义:counts the number of yet unachieved landmarks. generalisation of the number of unachieved goals heuristic used in the LAMA planner [Richter, AAAI 2008]

The current best heuristics are landmark heuristics variants

P+ be the relaxed problem obtained by ignoring the negative effects (delete list) of every action

Progression planning(Forward-Search)

Forward-Search feature

  1. can be used in conjunction with any search strategy to implement choose, breadth-first search,depth-first search, iterative- deepening, greedy search, A*.
  2. Forward-Search is sound: any plan returned is guaranteed to be a solution to the problem.
  3. Forward-Search is complete: provided the underlying search strategy is complete, it will always return a solution to the problem if there is one.

Forward-Search problem
it can have a large branching factor, It wastes a lot of time trying irrelevant actions.

solution:

  1. domain-specific: search control rules, heuristics.
  2. domain-independent: heuristics extracted from the STRIPS .
  3. problem description backward search: from the goal to the initial state.

Regression planning (backward search)

Comparation
For forward search, we started at the initial state and computed state transitions, leading to a new state γ(s, a)

For backward search, we start at the goal and compute inverse state transitions a.k.a regression, leading to a new goal γ−1(g, a)

不同之处:

  1. Regression planning is in the space of goals. Goals don't make the closed world assumption, so you don't know the value of the propositions that are not mentioned in the goal.
    The way to forbid loops is to check that no ancestor is labelled by a goal (set of propositions) that is a susbset of the goal labelling the current node.

  2. Forward search the nodes are labelled by states: everything mentioned in a state is true and the rest is false.
    The way to forbid loops is just to check whether the state labelling of your ancestor is the same state labelling the current node

使用说明:当start点leaf node多,那么就用backward search,反之,就用forward search。In both of them need to "forbid" loops in conjunction with DFS


the way to form last state: If a is relevant for g then: γ−1(g, a) = (g \ eff+(a)) ∪ pre(a)

An action a is relevant for goal g if:
– it makes at least one of g’s propositions true: g ∩ eff+(a) ̸= { }
– it does not make any of g’s proposition false: g ∩ eff−(a) = { }

Example
– g = {on(D, B), clear(D), ontable(A), clear(A)}

– a = putdown(R1, A)
operator putdown(r, x)
precondition {holding(R1,A)}
effect {ontable(A), clear(A), handempty(R1), ¬holding(R1, A)}

– γ−1(g, a) = {on(D, B), clear(D), holding(R1, A)}

性质:
Backward-Search is sound: any plan returned is guaranteed to be a solution to the problem.

Backward-Search is complete: provided the underlying search strategy is complete, it will always return a solution to the problem if there is one.

Regression planning (backward search) 改进——Lifting

We can substancially reduce the branching factor if we only partially in- stanciate the operators.

For instance, in the Blocks World, we may not need to distinguish between using robot hand R1 and robot hand R2. Just any hand will do.

After the regression, we obtain
g←{on(D,y),clear(D),handempty(r),on(A,B),clear(A),handempty(r′),y̸=B,r̸=r′}
π←⟨unstack(r′,A,B),unstack(r,D,y),putdown(r′,A),stack(r,D,E)⟩ withy̸=B,r̸=r′

while,
initial state: s = {on(D, E), clear(D), handempty(R1), on(A, B), clear(A), handempty(R2), . . .}
therefore, s satisfies g:σ←{r←R1,r′ ←R2,y←E}

result plan:
π ← ⟨unstack(R2, A, B), unstack(R1, D, E), putdown(R2, A), stack(R1, D, B)⟩

总结

State-space planning produces totally-ordered plans by a forward or backward search in the state space. This requires domain-independent heuristics or domain-specific control rules to be efficient

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,355评论 0 23
  • 解决方案 使用 @HTTP 注解: 其中 path 指定 Host ,即请求的 url ,method 指定请求类...
    学点东西吧6阅读 1,526评论 0 0
  • 一、买房 1.一个哥们这两天兴冲冲跟我讨论在哪里买房,说实话自己现在讨论这个问题,心都是碎的,捧出来跟饺子馅似的。...
    风雅狂月阅读 239评论 0 0
  • 文/溺巢 夕阳被乌云撕裂成散落的晕红 沿着电缆线飞速向前滑行 与它温度相似的记忆 随着列车行进的轨迹慢慢铺陈开来 ...
    溺巢阅读 318评论 0 0