练习:绘制正态分布概率密度函数
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution)。
若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
若随机变量 服从一个位置参数为 、尺度参数为 的概率分布,且其概率密度函数为:
标准正态分布
当
时,正态分布就成为标准正态分布
简单介绍了一下相关概念,现在我们进入正题。
这是代码效果图
、、
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['font.sans-serif'] = [u'SimHei'] # win正常显示中文
mpl.rcParams['axes.unicode_minus'] = False
mu = 0
sigma = 1
x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 51) #取奇数保证最中间有一个点 图好看点 没特殊意义
y = np.exp(-(x-mu) ** 2 / (2 * sigma ** 2)) / (np.sqrt(2 * np.pi) *sigma ) #上文的概率密度函数
plt.figure(facecolor='w')
plt.plot(x,y,'ro-',lw = 2,markersize = 6)
plt.xlabel('x',fontsize = 16)
plt.ylabel('Y',fontsize = 16)
plt.title('高斯分布函数',fontsize = 16)
plt.grid(True)
plt.show()