- 目录
- Handler、Looper、MessageQueue源码解析——Handler
- Handler、Looper、MessageQueue源码解析——Looper
- Handler、Looper、MessageQueue源码解析——ThreadLocal
- Handler、Looper、MessageQueue源码解析——MessageQueue
MessageQueue
/**
* Low-level class holding the list of messages to be dispatched by a
* {@link Looper}. Messages are not added directly to a MessageQueue,
* but rather through {@link Handler} objects associated with the Looper.
* You can retrieve the MessageQueue for the current thread with
* {@link Looper#myQueue() Looper.myQueue()}.
*/
Handler时用来发送消息的,调用sendMessageAtTime(),在调用MessageQueue的enqueueMessage(msg, uptimeMillis)方法,把消息插入到MessageQueue中。我们首先来看一下MessageQueue的enqueueMessage方法:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}```
在Looper的loop()方法中,开启了一个死循环,通过调用MessageQueue的next()方法,不断的取出消息,再交给Handler去处理。
Message msg = queue.next();```
我们来看一下MessageQueue的next()方法:
Message next() {
//注释1
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
//注释2
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
//注释3
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
//注释4
if (mQuitting) {
dispose();
return null;
}
}```
首先看注释1:mPrt==0时返回一个null,mPrt在什么时候为空呢,注意到有一个dispose()方法:
private void dispose() {
if (mPtr != 0) {
nativeDestroy(mPtr);
mPtr = 0;
}
}```
dispose()方法在哪调用呢,注意到在注释4处,当mQuitting==true时调用dispose()方法。那么mQuitting在哪赋值为true呢:
void quit(boolean safe) {
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked();
} else {
removeAllMessagesLocked();
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}```
也就是上节我们说到调用Looper中的quit()获得quitSafely()时会赋值为true,MessageQueue退出循环。
再看注释3:Message是一个单向链表,next指向下一个Message。首先会先判断当前时间与Message的时间对比:
//获取从开机到现在的时间
final long now = SystemClock.uptimeMillis();
when = SystemClock.uptimeMillis()+uptimeMillis;```
如果message已经准备好,则返回一个Message对象,并把Message的next指针指向下一个message。
再看注释2:什么时候message的target对象为空,在Handler发送Message时制定了target对象,当message的target对象为空时说明不是由Handler插入进来的,在MessageQueue的源码中找到这样一个方法;
private int postSyncBarrier(long when) {
// Enqueue a new sync barrier token.
// We don't need to wake the queue because the purpose of a barrier is to stall it.
synchronized (this) {
final int token = mNextBarrierToken++;
final Message msg = Message.obtain();
msg.markInUse();
msg.when = when;
msg.arg1 = token;
Message prev = null;
Message p = mMessages;
if (when != 0) {
while (p != null && p.when <= when) {
prev = p;
p = p.next;
}
}
if (prev != null) { // invariant: p == prev.next
msg.next = p;
prev.next = msg;
} else {
msg.next = p;
mMessages = msg;
}
return token;
}
}```
相当于设置一个消息屏障,如果遇到一个消息屏障,就会不停的循环找到一个异步消息,一般我们使用的都是同步消息,我们可以通过Message的setAsynchronous(true)方法指定为异步消息。
既然有开始循环,那么必定会有退出循环,我们调用Looper的quit()或者quitSafely()方法时实际调用的是MessageQueue的quit方法。quit()和quitSafely()方法的区别在Looper中已经提到了,分别调用了
removeAllMessagesLocked()和removeAllFutureMessagesLocked()方法,现在我们来看一下具体实现:
private void removeAllMessagesLocked() {
Message p = mMessages;
while (p != null) {
Message n = p.next;
p.recycleUnchecked();
p = n;
}
mMessages = null;
}```
因为Message是一个单向链表,把所有的Message回收掉。
private void removeAllFutureMessagesLocked() {
final long now = SystemClock.uptimeMillis();
Message p = mMessages;
if (p != null) {
if (p.when > now) {
removeAllMessagesLocked();
} else {
Message n;
for (;;) {
n = p.next;
if (n == null) {
return;
}
if (n.when > now) {
break;
}
p = n;
}
p.next = null;
do {
p = n;
n = p.next;
p.recycleUnchecked();
} while (n != null);
}
}
}```
当p.when > now时,即又延时的消息全部清空,对于没有延时的消息,通过一个死循环等待Handler处理完再回收。
我们注意到无论是Looper的loop()方法还是MessageQueue的next()方法,都是一个死循环,那么为什么不会造成阻塞或者对CPU有什么消耗上的影响?请参考知乎大神回答:[Android中为什么主线程不会因为Looper.loop()里的死循环卡死?](https://www.zhihu.com/question/34652589)