第三章-浅层神经网络

3.1 概论

  1. 逻辑回归



    中间层的隐藏单元中的计算
  • 首先你需要输入特征 x,参数W 和b ,通过 z = w^t * x + b T 你就可以计算
    出 z ,接下来使用 a = a(z) 就可以计算出a。我们将a的符号换为表示输出的 ŷ,然后可以计算出损失函数ℒ(a,y)。
  1. 基本神经网络结构


  • 首先 X 表示输入特征,W 和 b 是参数,z1 = Wx + b1计算出 z1。
  • 使用x^(i)表示第 i 个训练样本,上标方括号 1、2 表示不同的层,图中[1]表示神经网络的第一层, [2]表示神经网络的第二层 。
  • 类似逻辑回归,在计算z^[1] 后需要使用σ(z^[1])计算 a^[1],接下来你需要使用另外一个线
    z^[2] = W^[2] * a^[1] + b^[2]计算 z^[2], a^[2] = σ(z^[2]) 计算a^[2] ,此时a^[2] 就是整个神经网络最终的输出,用 𝑦表示网络的输出。
  1. 反向计算

3.2 神经网络表示

  1. 神经网络的符号惯例:
    x 表示输入特征
    a 表示每个神经元的输出, w 表示特征的权重,
    上标表示神经网络的层数(隐藏层为 1),下标表示该层的第几个神经元。
  2. 结构
  • 输入层
  • 隐藏层(很好解释了之前在第一章的疑惑):在一个神经网络中,当你使用监督学习训练它的时候,训练集包含了输入 也包含了目标输出 ,所以术语隐藏层的含义是在训练集中,这些中间结点的准确值我们是不知道到的,也就是说你看不见它们在训练集中应具有的值。你能看见输入的值,你也能看见输出的值,但是隐藏层中的东西,在训练集中你是无法看到的。所以这也解释了词语隐藏层,只是表示你无法在训练集中看到他们。
  • 简单点说,隐藏层就是把中间处理的过程隐藏起来而没有显性显示出来
  • 输出层
  1. 数据表示
  • 隐藏层以及最后的输出层是带有参数的,参数个数与隐藏层单元/节点有关
  • 传统上(两层的神经网络):输入层是不算入总层数内,所以隐藏层是第一层,输出层是第二层。
  • 技术上(三层的神经网络):因为这里有输入层、隐藏层,还有输出层。

3.3 神经网络的输出

中间的求导过程

四个方程求神经网络
  • 注:z代表隐藏层,这里有两个隐藏层

3.4 多样本向量化

  • 多个训练样本,则重复计算每个样本的4个方程(for循环)
  • 利用向量化简化该过程


  • 水平方向,这个垂直索引对应于神经网络中的不同的训练样本。
  • 垂直方向,这个垂直索引对应于神经网络中的不同节点。

3.5 向 量 化 实 现 的 解 释

3.6 激活函数( Activation functions)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342