NVIDIA-深度学习的军火商

一. NVIDIA的股票曲线

NVIDIA的成长曲线

NVIDIA的ceo人称老黄,在把公司的战略转移到深度学习上之后,过去的一年股价的翻了一番。现在基本上搞深度学习的公司都会屯一批nv的显卡。说nv是dl战争时代的军火商,并不为过。正好有机会参加了创新工场组织的NVIDIA的技术分享会(当然包括推广)。在此总结下nv在软件和硬件上提供的solution。

二. 硬件

按照价格和不同使用场景区分,新一代的Tesla gpu提供了如下的选择

  1. PX100
    作为后端训练性能最好的类型。分兼容pcie和集成2个版本。其中集成版本支持nvlink技术。双精度运算在4.7TeraFLOPS左右
  2. DGX-1
    其集成了8块PX100和cpu存储等作为整机。性价比比较低。13W美金
  3. K80
    后端训练次优配置。双精度运算在2.91 Teraflops左右
  4. titan X
    这款才是深度学习创业公司用的最多的显卡,性价比最高,不到1W的价格。最新的Tesla的titan X 是需要抢购或者从国外带过来的
  5. M40和M4
    这两款gpu的优势是功耗低,省电
  6. PX2
    PX2开始进入到自动驾驶行业,电动车特斯拉最新的自动驾驶技术就是采用px2作为核心的硬件计算单元。其特点是功耗低,并对多种传感器进行了抽象适配融合。为了适应不同的应用场景。它有1,2,4不同版本的配置。这个行业市场非常大
  7. Jetson TX1
    这款主要是面向嵌入式应用场景,比如:智能家居设备。功耗更低

三. 软件

虽然NVIDIA是硬件起家,但是老黄仍然把自己定义为软件公司。其亲自lead了很多软件项目的研发,比如最常用的cudnn。也正是因为如此,nv才能在深度学习这个领域把AMD甚至intel甩在后面。现在主流的深度学习框架都深度依赖了nv的硬件以及lib库
【深度学习NVIDIA软件列表】
【GPU-Accelerated Libraries列表】

  1. cuDNN
    The NVIDIA CUDA® Deep Neural Network library (cuDNN) 。支持深度学习网络中卷积,池化,激活,等操作。现阶段最高版本是5.1。更好的支持了rnn
  2. cublas
    GPU上基础的线性代数加速库
  3. cusparse
    GPU上基础的稀疏矩阵线性代数加速库
  4. tensorRT
    针对模型部署做inference性能的优化,定点化到int8或者fp16,并保持算法的准确率不变
  5. deepstream
    针对实时视频数据处理的sdk,支持基于tensorRT部署现有成熟的dl网络进行实时的分类处理,一个应用是直播中的色情分类
  6. nccl
    优化基于pcie显卡之间的通讯速度。优化之前通讯需要经过cpu的内存进行中转
  7. DIGITS
    NVIDIA尝试给出的深度学习框架。支持数据流pipeline,集群维护,图像分类和目标检测等等功能。但是不适合算法研究使用。灵活性较低
  8. NVIDIA Docker
    NVIDIA修改了docker 的engine支持容器化运行。这解决了cuda等多版本升级维护复杂的问题

四. 小结

NVIDIA在服务端,自动驾驶和嵌入式都有对应的布局。并且为研发人员提供了强大的开发工具(据说自动驾驶的sdk已经开发了2年)。现阶段的优势还是比较明显的。随着市场越来越热,在服务端其会面对intel FPGA解决方案的竞争。在移动设备端会面临专门的ASIC架构产品的竞争。不知道随着AI落地生根的之后,是否能成为pc时代的intel和移动时代的高通

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容