AI 学习笔记(一)

Agent:

they take the current percept as input from the sensors and return an action to the actuators

rationality

• The performance measure that defines the criterion of success.
• The agent’s prior knowledge of the environment.
• The actions that the agent can perform.
• The agent’s percept sequence to date.

simple flex agents:

  • These agents select actions on the basis of the current percept, ignoring the rest of the percept history
    即是根据当前的输入来选择动作
  • condition–action rule: if ... then ...
  • Infinite loops are often unavoidable for simple reflex agents operating in partially observable environments.Simple flex 需要环境是fully observable的。Scaping from infinite loops is possible if the agent can randomize its actions

model-based agents:

  • the agent should maintain some sort of internal state that depends on the percept history and thereby reflects at least some of the unobserved aspects of the current state.
  • An agent that uses such a model is called a model-based agent

goal-based agents:

  • the agent needs some sort of goal information that describes situations that are desirable
  • Although the goal-based agent appears less efficient, it is more flexible because the knowledge that supports its decisions is represented explicitly and can be modified.

Properties of task environments

Fully observable vs. partially observable

If an agent’s sensors give it access to the complete state of the environment at each point in time, then we say that the task environ- ment is fully observable

Single agent vs. multiagent

agent 的个数,开车就是一个,下棋就是两个

Deterministic vs. stochastic

If the next state of the environment is completely determined by the current state and the action executed by the agent, then we say the environment is deterministic; otherwise, it is stochastic(随机)
In principle, an agent need not worry about uncertainty in a fully observable, deterministic environment.

Episodic vs. sequential

the next episode does not depend on the actions taken in previous episodes 前后并无关联
In sequential environments, on the other hand, the current decision could affect all future decisions.例子:chess and taxi

Static vs. dynamic

If the environment can change while an agent is deliberating, then we say the environment is dynamic for that agent; otherwise, it is static.

Discrete vs. continuous

The discrete/continuous distinction applies to the state of the environment, to the way time is handled, and to the percepts and actions of the agent. chess:discrete taxi:continuous

Known vs. unknown

to the agent’s (or designer’s) state of knowledge about the “laws of physics” of the environment. In a known environment, the outcomes (or outcome probabilities if the environment is stochastic) for all actions are given.

什么是admissible heuristic function

In computer science, specifically in algorithms related to pathfinding, a heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current point in the path.

Greedy Best-first Search

每个节点有启发式函数,表示这个节点到终点的预计距离h(n)(the cost to get from the node to the goal),每次选最短的(greed),直到到达终点

Minimax and alpha-beta pruning

The minimax algorithm is a way of finding an optimal move in a two player game. Alpha-beta pruning is a way of finding the optimal minimax solution while avoiding searching subtrees of moves which won't be selected.

Some true of false:

  • Hill-climbing is an entirely deterministic algorithm. F stochastic hill-climbing random selection among uphill moves.
  • DFS has lower asymptotic space complexity than BFS F The limiting behavior of the use of memory space of an algorithm when the size of the problem goes to infinity. 我觉得应该是相反的
  • During search, one usually applies the goal test onto newly expanded children, before queuing-up these children. F 很多算法都是先queue再查
  • A contingency problem involves a nondeterministic and accessible environment. F inaccessible
  • A* is an admissible algorithm. 不确定 A* is admissible 但是是有前提的:启发函数要是admissible的
  • When using the correct temperature decrease schedule, simulated annealing is guaranteed to find the global optimum in finite time. F 不一定
  • Alpha-beta pruning accelerates game playing at the cost of being an approximation to full minimax. 我觉得是对的
  • Genetic algorithms use a step called “failover”. F
  • A perfectly rational backgammon-playing agent never loses F
  • Hill climbing search is best used for problem domains with densely packed goals T
  • The exact evaluation function values do not affect minimax decision as long as the ordering of these values is maintained. F
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,376评论 0 23
  • 2016-05-27懒先生的盐懒人帮 敌人是一种虚幻 人品可以出卖 商战无耻 是无底线的 在生意场上,从来没有永久...
    懒爷邱阅读 383评论 1 1
  • 形如琵琶黄橙色, 面部绒毛硬实软。 气味芳香味更浓, 甜甜味道肉软软。 消食止渴汁水多, 润肤美颜止咳喘。 视力提...
    六月天气阅读 501评论 7 9
  • 紧赶慢赶却还是因为走错方向错过末班车,如果是以前的我会去想如果早一点查路线就好了,一个星期前的我会说一切都是最...
    从妫妤到澜依阅读 336评论 0 0
  • 从出生 一直在岁月的山上攀爬 云雾缭绕 听过云霄之外的鸟 草本兴盛 嗅过蒲公英的羽毛 星河璀璨 遥遥的,向宇宙延伸...
    方牧重阅读 182评论 0 0