机器学习基础:奇异值分解(SVD)

SVD 原理

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,也是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。

有一个𝑚×𝑛的实数矩阵𝐴,我们想要把它分解成如下的形式:A = U\Sigma V^T

[图片上传失败...(image-a21214-1650075145167)]

其中𝑈和𝑉均为单位正交阵,即有𝑈𝑈^𝑇=𝐼𝑉𝑉^𝑇=𝐼,𝑈称为左奇异矩阵,𝑉称为右奇异矩阵,Σ仅在主对角线上有值,我们称它为奇异值,其它元素均为0。

上面矩阵的维度分别为U \in R^{m\times m},\ \Sigma \in R^{m\times n},\ V \in R^{n\times n}

[图片上传失败...(image-7f20f7-1650075145167)]

一般地Σ有如下形式
\Sigma = \left[ \begin{matrix} \sigma_1 & 0 & 0 & 0 & 0\\ 0 & \sigma_2 & 0 & 0 & 0\\ 0 & 0 & \ddots & 0 & 0\\ 0 & 0 & 0 & \ddots & 0\\ \end{matrix} \right]_{m\times n}

𝜎_𝑗 越大意味着对应的 𝐴′𝐴 的特征值 \sigma_j^2 越大, 从而其主成分 (principal component) 𝐴𝑣_𝑗 的样本方差越大, 我们把方差大视为提供了更多信息.

求解U, Σ, V

假设我们的矩阵A是一个m×n的矩阵,则A^TA是方阵,求其特征值及特征向量:

(A^TA)v_i = \lambda_i v_i

得到矩阵A^TA的n个特征值和对应的n个特征向量v


A^TA=V\Sigma^TU^TU\Sigma V^T =V\Sigma^T\Sigma V^T= V\Sigma^2V^T

将特征向量v张成一个n×n的矩阵V,就是SVD公式里面的V矩阵,V中的每个特征向量叫做A的右奇异向量。

同理:(AA^T)u_i = \lambda_i u_i,可得U矩阵。

求得U , V,然后求Σ,因Σ为奇异值矩阵,所以只需要求出每个奇异值σ即可。

A=U\Sigma V^T \Rightarrow AV=U\Sigma V^TV \Rightarrow

AV=U\Sigma \Rightarrow Av_i = \sigma_i u_i \Rightarrow \sigma_i=Av_i / u_i

其实特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:

\sigma_i = \sqrt{\lambda_i}

所以不用\sigma_i = Av_i / u_i也可以通过求出A^TA的特征值取平方根来求奇异值。

SVD算法


输入:样本数据
输出:左奇异矩阵,奇异值矩阵,右奇异矩阵

1 计算特征值: 特征值分解AA^T,其中A \in \mathbf{R}^{m\times n}为原始样本数据
AA^T=U\Sigma \Sigma^TU^T

得到左奇异矩阵U \in \mathbf{R}^{m \times m}和奇异值矩阵\Sigma' \in \mathbf{R}^{m \times m}

2 间接求部分右奇异矩阵: 求V' \in \mathbf{R}^{m \times n}

利用A=UΣ′V′可得

V' = (U\Sigma')^{-1}A = (\Sigma')^{-1}U^TA

3 返回U, Σ′, V′,分别为左奇异矩阵,奇异值矩阵,右奇异矩阵。


Python 求解SVD

from numpy import array
from numpy import diag
from numpy import zeros
from scipy.linalg import svd
# define a matrix
A = array([
    [1,2,3,4,5,6,7,8,9,10],
    [11,12,13,14,15,16,17,18,19,20],
    [21,22,23,24,25,26,27,28,29,30]])
print(A)
>>> A
array([[ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10],
       [11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
       [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]])
# Singular-value decomposition
U, s, VT = svd(A)
# create m x n Sigma matrix
Sigma = zeros((A.shape[0], A.shape[1]))
# populate Sigma with n x n diagonal matrix
Sigma[:A.shape[0], :A.shape[0]] = diag(s)
# select
n_elements = 2
Sigma = Sigma[:, :n_elements]
VT = VT[:n_elements, :]
# reconstruct
B = U.dot(Sigma.dot(VT))
print(B)
>>> B
array([[ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.],
       [11., 12., 13., 14., 15., 16., 17., 18., 19., 20.],
       [21., 22., 23., 24., 25., 26., 27., 28., 29., 30.]])
# transform
T = U.dot(Sigma)
print(T)
>>> T
array([[-18.52157747,   6.47697214],
       [-49.81310011,   1.91182038],
       [-81.10462276,  -2.65333138]])
T = A.dot(VT.T)
print(T)
[[-18.52157747   6.47697214]
 [-49.81310011   1.91182038]
 [-81.10462276  -2.65333138]]

参考:
https://www.cnblogs.com/pinard/p/6251584.html
https://www.cnblogs.com/endlesscoding/p/10033527.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容