整理自:
Java面试题全集(上)https://blog.csdn.net/jackfrued/article/details/44921941
Java面试题全集(中)https://blog.csdn.net/jackfrued/article/details/44931137
Java面试题全集(下)https://blog.csdn.net/jackfrued/article/details/44931161
1.访问修饰符public,private,protected,以及不写(默认)时的区别?
修饰符 | 当前类 | 同包 | 子类 | 其它包 |
---|---|---|---|---|
public | √ | √ | √ | √ |
protected | √ | √ | √ | × |
default | √ | √ | × | × |
private | √ | × | × | × |
类的成员不写访问修饰时默认为default。默认对于同一个包中的其他类相当于公开(public),对于不是同一个包中的其他类相当于私有(private)。受保护(protected)对子类相当于公开,对不是同一包中的没有父子关系的类相当于私有。Java中,外部类的修饰符只能是public或默认,类的成员(包括内部类)的修饰符可以是以上四种。
- 访问修饰符public,private,protected,以及不写(默认)时的区别?
Java是一个近乎纯洁的面向对象编程语言,但是为了编程的方便还是引入了基本数据类型,但是为了能够将这些基本数据类型当成对象操作,Java为每一个基本数据类型都引入了对应的包装类型(wrapper class),int的包装类就是Integer,从Java 5开始引入了自动装箱/拆箱机制,使得二者可以相互转换。
Java 为每个原始类型提供了包装类型:
- 原始类型: boolean,char,byte,short,int,long,float,double
- 包装类型:Boolean,Character,Byte,Short,Integer,Long,Float,Double
class AutoUnboxingTest {
public static void main(String[] args) {
Integer a = new Integer(3);
Integer b = 3; // 将3自动装箱成Integer类型
int c = 3;
System.out.println(a == b); // false 两个引用没有引用同一对象
System.out.println(a == c); // true a自动拆箱成int类型再和c比较
}
}
最近还遇到一个面试题,也是和自动装箱和拆箱有点关系的,代码如下所示:
public class Test03 {
public static void main(String[] args) {
Integer f1 = 100, f2 = 100, f3 = 150, f4 = 150;
System.out.println(f1 == f2);
System.out.println(f3 == f4);
}
}
如果不明就里很容易认为两个输出要么都是true要么都是false。首先需要注意的是f1、f2、f3、f4四个变量都是Integer对象引用,所以下面的==运算比较的不是值而是引用。装箱的本质是什么呢?当我们给一个Integer对象赋一个int值的时候,会调用Integer类的静态方法valueOf,如果看看valueOf的源代码就知道发生了什么。
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
IntegerCache是Integer的内部类,其代码如下所示:
/**
* Cache to support the object identity semantics of autoboxing for values between
* -128 and 127 (inclusive) as required by JLS.
*
* The cache is initialized on first usage. The size of the cache
* may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
* During VM initialization, java.lang.Integer.IntegerCache.high property
* may be set and saved in the private system properties in the
* sun.misc.VM class.
*/
private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer cache[];
static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
try {
int i = parseInt(integerCacheHighPropValue);
i = Math.max(i, 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
} catch( NumberFormatException nfe) {
// If the property cannot be parsed into an int, ignore it.
}
}
high = h;
cache = new Integer[(high - low) + 1];
int j = low;
for(int k = 0; k < cache.length; k++)
cache[k] = new Integer(j++);
// range [-128, 127] must be interned (JLS7 5.1.7)
assert IntegerCache.high >= 127;
}
private IntegerCache() {}
}
简单的说,如果整型字面量的值在-128到127之间,那么不会new新的Integer对象,而是直接引用常量池中的Integer对象,所以上面的面试题中f1==f2的结果是true,而f3==f4的结果是false。
- 解释内存中的栈(stack)、堆(heap)和方法区(method area)的用法。
通常我们定义一个基本数据类型的变量,一个对象的引用,还有就是函数调用的现场保存都使用JVM中的栈空间;而通过new关键字和构造器创建的对象则放在堆空间,堆是垃圾收集器管理的主要区域,由于现在的垃圾收集器都采用分代收集算法,所以堆空间还可以细分为新生代和老生代,再具体一点可以分为Eden、Survivor(又可分为From Survivor和To Survivor)、Tenured;方法区和堆都是各个线程共享的内存区域,用于存储已经被JVM加载的类信息、常量、静态变量、JIT编译器编译后的代码等数据;程序中的字面量(literal)如直接书写的100、"hello"和常量都是放在常量池中,常量池是方法区的一部分。栈空间操作起来最快但是栈很小,通常大量的对象都是放在堆空间,栈和堆的大小都可以通过JVM的启动参数来进行调整,栈空间用光了会引发StackOverflowError,而堆和常量池空间不足则会引发OutOfMemoryError。
String str = new String("hello");
上面的语句中变量str放在栈上,用new创建出来的字符串对象放在堆上,而"hello"这个字面量是放在方法区的。
补充1:较新版本的Java(从Java 6的某个更新开始)中,由于JIT编译器的发展和"逃逸分析"技术的逐渐成熟,栈上分配、标量替换等优化技术使得对象一定分配在堆上这件事情已经变得不那么绝对了。
补充2:运行时常量池相当于Class文件常量池具有动态性,Java语言并不要求常量一定只有编译期间才能产生,运行期间也可以将新的常量放入池中,String类的intern()方法就是这样的。
- 当一个对象被当作参数传递到一个方法后,此方法可改变这个对象的属性,并可返回变化后的结果,那么这里到底是值传递还是引用传递?
是值传递。Java语言的方法调用只支持参数的值传递。当一个对象实例作为一个参数被传递到方法中时,参数的值就是对该对象的引用。对象的属性可以在被调用过程中被改变,但对对象引用的改变是不会影响到调用者的。
说明:Java中没有传引用实在是非常的不方便,这一点在Java 8中仍然没有得到改进,正是如此在Java编写的代码中才会出现大量的Wrapper类(将需要通过方法调用修改的引用置于一个Wrapper类中,再将Wrapper对象传入方法),这样的做法只会让代码变得臃肿,尤其是让从C和C++转型为Java程序员的开发者无法容忍。
- 描述一下JVM加载class文件的原理机制?
JVM中类的装载是由类加载器(ClassLoader)和它的子类来实现的,Java中的类加载器是一个重要的Java运行时系统组件,它负责在运行时查找和装入类文件中的类。
由于Java的跨平台性,经过编译的Java源程序并不是一个可执行程序,而是一个或多个类文件。当Java程序需要使用某个类时,JVM会确保这个类已经被加载、连接(验证、准备和解析)和初始化。
类的加载是指把类的.class文件中的数据读入到内存中,通常是创建一个字节数组读入.class文件,然后产生与所加载类对应的Class对象。加载完成后,Class对象还不完整,所以此时的类还不可用。
当类被加载后就进入连接阶段,这一阶段包括验证、准备(为静态变量分配内存并设置默认的初始值)和解析(将符号引用替换为直接引用)三个步骤。
最后JVM对类进行初始化,包括:1)如果类存在直接的父类并且这个类还没有被初始化,那么就先初始化父类;2)如果类中存在初始化语句,就依次执行这些初始化语句。
类的加载是由类加载器完成的,类加载器包括:根加载器(BootStrap)、扩展加载器(Extension)、系统加载器(System)和用户自定义类加载器(java.lang.ClassLoader的子类)。从Java 2(JDK 1.2)开始,类加载过程采取了父亲委托机制(PDM)。PDM更好的保证了Java平台的安全性,在该机制中,JVM自带的Bootstrap是根加载器,其他的加载器都有且仅有一个父类加载器。类的加载首先请求父类加载器加载,父类加载器无能为力时才由其子类加载器自行加载。JVM不会向Java程序提供对Bootstrap的引用。下面是关于几个类加载器的说明:
- Bootstrap:一般用本地代码实现,负责加载JVM基础核心类库(rt.jar);
- Extension:从java.ext.dirs系统属性所指定的目录中加载类库,它的父加载器是Bootstrap;
- System:又叫应用类加载器,其父类是Extension。它是应用最广泛的类加载器。它从环境变量classpath或者系统属性java.class.path所指定的目录中记载类,是用户自定义加载器的默认父加载器。
- 抽象类(abstract class)和接口(interface)有什么异同?
抽象类和接口都不能够实例化,但可以定义抽象类和接口类型的引用。一个类如果继承了某个抽象类或者实现了某个接口都需要对其中的抽象方法全部进行实现,否则该类仍然需要被声明为抽象类。接口比抽象类更加抽象,因为抽象类中可以定义构造器,可以有抽象方法和具体方法,而接口中不能定义构造器而且其中的方法全部都是抽象方法。抽象类中的成员可以是private、默认、protected、public的,而接口中的成员全都是public的。抽象类中可以定义成员变量,而接口中定义的成员变量实际上都是常量。有抽象方法的类必须被声明为抽象类,而抽象类未必要有抽象方法。
- 阐述静态变量和实例变量的区别。
静态变量是被static修饰符修饰的变量,也称为类变量,它属于类,不属于类的任何一个对象,一个类不管创建多少个对象,静态变量在内存中有且仅有一个拷贝;实例变量必须依存于某一实例,需要先创建对象然后通过对象才能访问到它。静态变量可以实现让多个对象共享内存。
- 如何实现对象克隆?
有两种方式:
1). 实现Cloneable接口并重写Object类中的clone()方法;
2). 实现Serializable接口,通过对象的序列化和反序列化实现克隆,可以实现真正的深度克隆,代码如下。
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
public class MyUtil {
private MyUtil() {
throw new AssertionError();
}
@SuppressWarnings("unchecked")
public static <T extends Serializable> T clone(T obj) throws Exception {
ByteArrayOutputStream bout = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(bout);
oos.writeObject(obj);
ByteArrayInputStream bin = new ByteArrayInputStream(bout.toByteArray());
ObjectInputStream ois = new ObjectInputStream(bin);
return (T) ois.readObject();
// 说明:调用ByteArrayInputStream或ByteArrayOutputStream对象的close方法没有任何意义
// 这两个基于内存的流只要垃圾回收器清理对象就能够释放资源,这一点不同于对外部资源(如文件流)的释放
}
}
注意:基于序列化和反序列化实现的克隆不仅仅是深度克隆,更重要的是通过泛型限定,可以检查出要克隆的对象是否支持序列化,这项检查是编译器完成的,不是在运行时抛出异常,这种是方案明显优于使用Object类的clone方法克隆对象。让问题在编译的时候暴露出来总是好过把问题留到运行时。
- GC是什么?为什么要有GC?
GC是垃圾收集的意思,内存处理是编程人员容易出现问题的地方,忘记或者错误的内存回收会导致程序或系统的不稳定甚至崩溃,Java提供的GC功能可以自动监测对象是否超过作用域从而达到自动回收内存的目的,Java语言没有提供释放已分配内存的显示操作方法。
Java程序员不用担心内存管理,因为垃圾收集器会自动进行管理。要请求垃圾收集,可以调用下面的方法之一:System.gc() 或Runtime.getRuntime().gc() ,但JVM可以屏蔽掉显示的垃圾回收调用。
垃圾回收可以有效的防止内存泄露,有效的使用可以使用的内存。垃圾回收器通常是作为一个单独的低优先级的线程运行,不可预知的情况下对内存堆中已经死亡的或者长时间没有使用的对象进行清除和回收,程序员不能实时的调用垃圾回收器对某个对象或所有对象进行垃圾回收。
在Java诞生初期,垃圾回收是Java最大的亮点之一,因为服务器端的编程需要有效的防止内存泄露问题,然而时过境迁,如今Java的垃圾回收机制已经成为被诟病的东西。移动智能终端用户通常觉得IOS的系统比Android系统有更好的用户体验,其中一个深层次的原因就在于Android系统中垃圾回收的不可预知性。
补充:垃圾回收机制有很多种,包括:分代复制垃圾回收、标记垃圾回收、增量垃圾回收等方式。标准的Java进程既有栈又有堆。栈保存了原始型局部变量,堆保存了要创建的对象。Java平台对堆内存回收和再利用的基本算法被称为标记和清除,但是Java对其进行了改进,采用“分代式垃圾收集”。这种方法会跟Java对象的生命周期将堆内存划分为不同的区域,在垃圾收集过程中,可能会将对象移动到不同区域:
- 伊甸园(Eden):这是对象最初诞生的区域,并且对大多数对象来说,这里是它们唯一存在过的区域。
- 幸存者乐园(Survivor):从伊甸园幸存下来的对象会被挪到这里。
- 终身颐养园(Tenured):这是足够老的幸存对象的归宿。年轻代收集(Minor-GC)过程是不会触及这个地方的。当年轻代收集不能把对象放进终身颐养园时,就会触发一次完全收集(Major-GC),这里可能还会牵扯到压缩,以便为大对象腾出足够的空间。
与垃圾回收相关的JVM参数:
-Xms / -Xmx — 堆的初始大小 / 堆的最大大小
-Xmn — 堆中年轻代的大小
-XX:-DisableExplicitGC — 让System.gc()不产生任何作用
-XX:+PrintGCDetails — 打印GC的细节
-XX:+PrintGCDateStamps — 打印GC操作的时间戳
-XX:NewSize / XX:MaxNewSize — 设置新生代大小/新生代最大大小
-XX:NewRatio — 可以设置老生代和新生代的比例
-XX:PrintTenuringDistribution — 设置每次新生代GC后输出幸存者乐园中对象年龄的分布
-XX:InitialTenuringThreshold / -XX:MaxTenuringThreshold:设置老年代阀值的初始值和最大值
-XX:TargetSurvivorRatio:设置幸存区的目标使用率
- String s = new String("xyz");创建了几个字符串对象?
两个对象,一个是静态区的"xyz",一个是用new创建在堆上的对象。
- 指出下面程序的运行结果。
class A {
static {
System.out.print("1");
}
public A() {
System.out.print("2");
}
}
class B extends A{
static {
System.out.print("a");
}
public B() {
System.out.print("b");
}
}
public class Hello {
public static void main(String[] args) {
A ab = new B();
ab = new B();
}
}
执行结果:1a2b2b。创建对象时构造器的调用顺序是:先初始化静态成员,然后调用父类构造器,再初始化非静态成员,最后调用自身构造器。
- try{}里有一个return语句,那么紧跟在这个try后的finally{}里的代码会不会被执行,什么时候被执行,在return前还是后?
会执行,在方法返回调用者前执行。
注意:在finally中改变返回值的做法是不好的,因为如果存在finally代码块,try中的return语句不会立马返回调用者,而是记录下返回值待finally代码块执行完毕之后再向调用者返回其值,然后如果在finally中修改了返回值,就会返回修改后的值。显然,在finally中返回或者修改返回值会对程序造成很大的困扰,C#中直接用编译错误的方式来阻止程序员干这种龌龊的事情,Java中也可以通过提升编译器的语法检查级别来产生警告或错误,Eclipse中可以在如图所示的地方进行设置,强烈建议将此项设置为编译错误。
- 阐述final、finally、finalize的区别
- final:修饰符(关键字)有三种用法:如果一个类被声明为final,意味着它不能再派生出新的子类,即不能被继承,因此它和abstract是反义词。将变量声明为final,可以保证它们在使用中不被改变,被声明为final的变量必须在声明时给定初值,而在以后的引用中只能读取不可修改。被声明为final的方法也同样只能使用,不能在子类中被重写。
- finally:通常放在try…catch…的后面构造总是执行代码块,这就意味着程序无论正常执行还是发生异常,这里的代码只要JVM不关闭都能执行,可以将释放外部资源的代码写在finally块中。
- finalize:Object类中定义的方法,Java中允许使用finalize()方法在垃圾收集器将对象从内存中清除出去之前做必要的清理工作。这个方法是由垃圾收集器在销毁对象时调用的,通过重写finalize()方法可以整理系统资源或者执行其他清理工作。
- 阐述ArrayList、Vector、LinkedList的存储性能和特性
ArrayList 和Vector都是使用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢,Vector中的方法由于添加了synchronized修饰,因此Vector是线程安全的容器,但性能上较ArrayList差,因此已经是Java中的遗留容器。
LinkedList使用双向链表实现存储(将内存中零散的内存单元通过附加的引用关联起来,形成一个可以按序号索引的线性结构,这种链式存储方式与数组的连续存储方式相比,内存的利用率更高),按序号索引数据需要进行前向或后向遍历,但是插入数据时只需要记录本项的前后项即可,所以插入速度较快。
Vector属于遗留容器(Java早期的版本中提供的容器,除此之外,Hashtable、Dictionary、BitSet、Stack、Properties都是遗留容器),已经不推荐使用,但是由于ArrayList和LinkedListed都是非线程安全的,如果遇到多个线程操作同一个容器的场景,则可以通过工具类Collections中的synchronizedList方法将其转换成线程安全的容器后再使用(这是对装潢模式的应用,将已有对象传入另一个类的构造器中创建新的对象来增强实现)。
遗留容器中的Properties类和Stack类在设计上有严重的问题,Properties是一个键和值都是字符串的特殊的键值对映射,在设计上应该是关联一个Hashtable并将其两个泛型参数设置为String类型,但是Java API中的Properties直接继承了Hashtable,这很明显是对继承的滥用。这里复用代码的方式应该是Has-A关系而不是Is-A关系,另一方面容器都属于工具类,继承工具类本身就是一个错误的做法,使用工具类最好的方式是Has-A关系(关联)或Use-A关系(依赖)。同理,Stack类继承Vector也是不正确的。Sun公司的工程师们也会犯这种低级错误,让人唏嘘不已。
- Collection和Collections的区别?
Collection是一个接口,它是Set、List等容器的父接口;Collections是个一个工具类,提供了一系列的静态方法来辅助容器操作,这些方法包括对容器的搜索、排序、线程安全化等。
- Thread类的sleep()方法和对象的wait()方法都可以让线程暂停执行,它们有什么区别?
sleep()方法(休眠)是线程类(Thread)的静态方法,调用此方法会让当前线程暂停执行指定的时间,将执行机会(CPU)让给其他线程,但是对象的锁依然保持,因此休眠时间结束后会自动恢复(线程回到就绪状态)。
wait()是Object类的方法,调用对象的wait()方法导致当前线程放弃对象的锁(线程暂停执行),进入对象的等待池(wait pool),只有调用对象的notify()方法(或notifyAll()方法)时才能唤醒等待池中的线程进入等锁池(lock pool),如果线程重新获得对象的锁就可以进入就绪状态。
可能不少人对什么是进程,什么是线程还比较模糊,对于为什么需要多线程编程也不是特别理解。简单的说:进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,是操作系统进行资源分配和调度的一个独立单位;线程是进程的一个实体,是CPU调度和分派的基本单位,是比进程更小的能独立运行的基本单位。线程的划分尺度小于进程,这使得多线程程序的并发性高;进程在执行时通常拥有独立的内存单元,而线程之间可以共享内存。使用多线程的编程通常能够带来更好的性能和用户体验,但是多线程的程序对于其他程序是不友好的,因为它可能占用了更多的CPU资源。当然,也不是线程越多,程序的性能就越好,因为线程之间的调度和切换也会浪费CPU时间。时下很时髦的Node.js就采用了单线程异步I/O的工作模式。
- 线程的sleep()方法和yield()方法有什么区别?
① sleep()方法给其他线程运行机会时不考虑线程的优先级,因此会给低优先级的线程以运行的机会;yield()方法只会给相同优先级或更高优先级的线程以运行的机会;
② 线程执行sleep()方法后转入阻塞(blocked)状态,而执行yield()方法后转入就绪(ready)状态;
③ sleep()方法声明抛出InterruptedException,而yield()方法没有声明任何异常;
④ sleep()方法比yield()方法(跟操作系统CPU调度相关)具有更好的可移植性。
- 编写多线程程序有几种实现方式?
Java 5以前实现多线程有两种实现方法:一种是继承Thread类;另一种是实现Runnable接口。两种方式都要通过重写run()方法来定义线程的行为,推荐使用后者,因为Java中的继承是单继承,一个类有一个父类,如果继承了Thread类就无法再继承其他类了,显然使用Runnable接口更为灵活。
补充:Java 5以后创建线程还有第三种方式:实现Callable接口,该接口中的call方法可以在线程执行结束时产生一个返回值,代码如下所示:
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
class MyTask implements Callable<Integer> {
private int upperBounds;
public MyTask(int upperBounds) {
this.upperBounds = upperBounds;
}
@Override
public Integer call() throws Exception {
int sum = 0;
for(int i = 1; i <= upperBounds; i++) {
sum += i;
}
return sum;
}
}
class Test {
public static void main(String[] args) throws Exception {
List<Future<Integer>> list = new ArrayList<>();
ExecutorService service = Executors.newFixedThreadPool(10);
for(int i = 0; i < 10; i++) {
list.add(service.submit(new MyTask((int) (Math.random() * 100))));
}
int sum = 0;
for(Future<Integer> future : list) {
// while(!future.isDone()) ;
sum += future.get();
}
System.out.println(sum);
}
}
-
什么是线程池(thread pool)?
在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源。在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收。所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁,这就是“池化资源”技术产生的原因。
线程池顾名思义就是事先创建若干个可执行的线程放入一个池(容器)中,需要的时候从池中获取线程不用自行创建,使用完毕不需要销毁线程而是放回池中,从而减少创建和销毁线程对象的开销。
Java 5+中的Executor接口定义一个执行线程的工具。它的子类型即线程池接口是ExecutorService。要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,因此在工具类Executors面提供了一些静态工厂方法,生成一些常用的线程池,如下所示:
- newSingleThreadExecutor:创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
- newFixedThreadPool:创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
- newCachedThreadPool:创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
- newScheduledThreadPool:创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。
- newSingleThreadExecutor:创建一个单线程的线程池。此线程池支持定时以及周期性执行任务的需求。
如果希望在服务器上使用线程池,强烈建议使用newFixedThreadPool方法来创建线程池,这样能获得更好的性能。
- 线程的基本状态以及状态之间的关系?
说明:其中Running表示运行状态,Runnable表示就绪状态(万事俱备,只欠CPU),Blocked表示阻塞状态,阻塞状态又有多种情况,可能是因为调用wait()方法进入等待池,也可能是执行同步方法或同步代码块进入等锁池,或者是调用了sleep()方法或join()方法等待休眠或其他线程结束,或是因为发生了I/O中断。
- 简述synchronized 和java.util.concurrent.locks.Lock的异同?
Lock是Java 5以后引入的新的API,和关键字synchronized相比主要相同点:Lock 能完成synchronized所实现的所有功能;主要不同点:Lock有比synchronized更精确的线程语义和更好的性能,而且不强制性的要求一定要获得锁。synchronized会自动释放锁,而Lock一定要求程序员手工释放,并且最好在finally 块中释放(这是释放外部资源的最好的地方)。
- Java中如何实现序列化,有什么意义?
序列化就是一种用来处理对象流的机制,所谓对象流也就是将对象的内容进行流化。可以对流化后的对象进行读写操作,也可将流化后的对象传输于网络之间。序列化是为了解决对象流读写操作时可能引发的问题(如果不进行序列化可能会存在数据乱序的问题)。
要实现序列化,需要让一个类实现Serializable接口,该接口是一个标识性接口,标注该类对象是可被序列化的,然后使用一个输出流来构造一个对象输出流并通过writeObject(Object)方法就可以将实现对象写出(即保存其状态);如果需要反序列化则可以用一个输入流建立对象输入流,然后通过readObject方法从流中读取对象。序列化除了能够实现对象的持久化之外,还能够用于对象的深度克隆。
- Java中有几种类型的流?
字节流和字符流。字节流继承于InputStream、OutputStream,字符流继承于Reader、Writer。在java.io 包中还有许多其他的流,主要是为了提高性能和使用方便。关于Java的I/O需要注意的有两点:一是两种对称性(输入和输出的对称性,字节和字符的对称性);二是两种设计模式(适配器模式和装潢模式)。
面试题 - 编程实现文件拷贝。(这个题目在笔试的时候经常出现,下面的代码给出了两种实现方案)
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
public final class MyUtil {
private MyUtil() {
throw new AssertionError();
}
public static void fileCopy(String source, String target) throws IOException {
try (InputStream in = new FileInputStream(source)) {
try (OutputStream out = new FileOutputStream(target)) {
byte[] buffer = new byte[4096];
int bytesToRead;
while((bytesToRead = in.read(buffer)) != -1) {
out.write(buffer, 0, bytesToRead);
}
}
}
}
public static void fileCopyNIO(String source, String target) throws IOException {
try (FileInputStream in = new FileInputStream(source)) {
try (FileOutputStream out = new FileOutputStream(target)) {
FileChannel inChannel = in.getChannel();
FileChannel outChannel = out.getChannel();
ByteBuffer buffer = ByteBuffer.allocate(4096);
while(inChannel.read(buffer) != -1) {
buffer.flip();
outChannel.write(buffer);
buffer.clear();
}
}
}
}
}
注意:上面用到Java 7的TWR,使用TWR后可以不用在finally中释放外部资源 ,从而让代码更加优雅。
- 写一个方法,输入一个文件名和一个字符串,统计这个字符串在这个文件中出现的次数。
import java.io.BufferedReader;
import java.io.FileReader;
public final class MyUtil {
// 工具类中的方法都是静态方式访问的因此将构造器私有不允许创建对象(绝对好习惯)
private MyUtil() {
throw new AssertionError();
}
/**
* 统计给定文件中给定字符串的出现次数
*
* @param filename 文件名
* @param word 字符串
* @return 字符串在文件中出现的次数
*/
public static int countWordInFile(String filename, String word) {
int counter = 0;
try (FileReader fr = new FileReader(filename)) {
try (BufferedReader br = new BufferedReader(fr)) {
String line = null;
while ((line = br.readLine()) != null) {
int index = -1;
while (line.length() >= word.length() && (index = line.indexOf(word)) >= 0) {
counter++;
line = line.substring(index + word.length());
}
}
}
} catch (Exception ex) {
ex.printStackTrace();
}
return counter;
}
}
- 如何用Java代码列出一个目录下所有的文件?
import java.io.File;
class Test12 {
public static void main(String[] args) {
File f = new File("/Users/Hao/Downloads");
for(File temp : f.listFiles()) {
if(temp.isFile()) {
System.out.println(temp.getName());
}
}
}
}
如果需要对文件夹继续展开,代码如下所示:
import java.io.File;
class Test12 {
public static void main(String[] args) {
showDirectory(new File("/Users/Hao/Downloads"));
}
public static void showDirectory(File f) {
_walkDirectory(f, 0);
}
private static void _walkDirectory(File f, int level) {
if(f.isDirectory()) {
for(File temp : f.listFiles()) {
_walkDirectory(temp, level + 1);
}
}
else {
for(int i = 0; i < level - 1; i++) {
System.out.print("\t");
}
System.out.println(f.getName());
}
}
}
在Java 7中可以使用NIO.2的API来做同样的事情,代码如下所示:
class ShowFileTest {
public static void main(String[] args) throws IOException {
Path initPath = Paths.get("/Users/Hao/Downloads");
Files.walkFileTree(initPath, new SimpleFileVisitor<Path>() {
@Override
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
throws IOException {
System.out.println(file.getFileName().toString());
return FileVisitResult.CONTINUE;
}
});
}
}
- 在进行数据库编程时,连接池有什么作用?
由于创建连接和释放连接都有很大的开销(尤其是数据库服务器不在本地时,每次建立连接都需要进行TCP的三次握手,释放连接需要进行TCP四次握手,造成的开销是不可忽视的),为了提升系统访问数据库的性能,可以事先创建若干连接置于连接池中,需要时直接从连接池获取,使用结束时归还连接池而不必关闭连接,从而避免频繁创建和释放连接所造成的开销,这是典型的用空间换取时间的策略(浪费了空间存储连接,但节省了创建和释放连接的时间)。
池化技术在Java开发中是很常见的,在使用线程时创建线程池的道理与此相同。基于Java的开源数据库连接池主要有:C3P0、Proxool、DBCP、BoneCP、Druid等。
在计算机系统中时间和空间是不可调和的矛盾,理解这一点对设计满足性能要求的算法是至关重要的。大型网站性能优化的一个关键就是使用缓存,而缓存跟上面讲的连接池道理非常类似,也是使用空间换时间的策略。可以将热点数据置于缓存中,当用户查询这些数据时可以直接从缓存中得到,这无论如何也快过去数据库中查询。当然,缓存的置换策略等也会对系统性能产生重要影响,对于这个问题的讨论已经超出了这里要阐述的范围。
- 事务的ACID是指什么?
- 原子性(Atomic):事务中各项操作,要么全做要么全不做,任何一项操作的失败都会导致整个事务的失败;
- 一致性(Consistent):事务结束后系统状态是一致的;
- 隔离性(Isolated):并发执行的事务彼此无法看到对方的中间状态;
- 持久性(Durable):事务完成后所做的改动都会被持久化,即使发生灾难性的失败。通过日志和同步备份可以在故障发生后重建数据。
补充:关于事务,在面试中被问到的概率是很高的,可以问的问题也是很多的。首先需要知道的是,只有存在并发数据访问时才需要事务。当多个事务访问同一数据时,可能会存在5类问题,包括3类数据读取问题(脏读、不可重复读和幻读)和2类数据更新问题(第1类丢失更新和第2类丢失更新)。
脏读(Dirty Read):A事务读取B事务尚未提交的数据并在此基础上操作,而B事务执行回滚,那么A读取到的数据就是脏数据。
时间 | 转账事务A | 取款事务B |
---|---|---|
T1 | 开始事务 | |
T2 | 开始事务 | |
T3 | 查询账户余额为1000元 | |
T4 | 取出500元余额修改为500元 | |
T5 | 查询账户余额为500元(脏读) | |
T6 | 撤销事务余额恢复为1000元 | |
T7 | 汇入100元把余额修改为600元 | |
T8 | 提交事务 |
不可重复读(Unrepeatable Read):事务A重新读取前面读取过的数据,发现该数据已经被另一个已提交的事务B修改过了。
时间 | 转账事务A | 取款事务B |
---|---|---|
T1 | 开始事务 | |
T2 | 开始事务 | |
T3 | 查询账户余额为1000元 | |
T4 | 查询账户余额为1000元 | |
T5 | 取出100元修改余额为900元 | |
T6 | 提交事务 | |
T7 | 查询账户余额为900元(不可重复读) |
幻读(Phantom Read):事务A重新执行一个查询,返回一系列符合查询条件的行,发现其中插入了被事务B提交的行。
时间 | 统计金额事务A | 转账事务B |
---|---|---|
T1 | 开始事务 | |
T2 | 开始事务 | |
T3 | 统计总存款为10000元 | |
T4 | 新增一个存款账户存入100元 | |
T5 | 提交事务 | |
T6 | 再次统计总存款为10100元(幻读) |
第1类丢失更新:事务A撤销时,把已经提交的事务B的更新数据覆盖了。
时间 | 取款事务A | 转账事务B |
---|---|---|
T1 | 开始事务 | |
T2 | 开始事务 | |
T3 | 查询账户余额为1000元 | |
T4 | 查询账户余额为1000元 | |
T5 | 汇入100元修改余额为1100元 | |
T6 | 提交事务 | |
T7 | 取出100元将余额修改为900元 | |
T8 | 撤销事务 | |
T9 | 余额恢复为1000元(丢失更新) |
第2类丢失更新:事务A覆盖事务B已经提交的数据,造成事务B所做的操作丢失。
时间 | 转账事务A | 取款事务B |
---|---|---|
T1 | 开始事务 | |
T2 | 开始事务 | |
T3 | 查询账户余额为1000元 | |
T4 | 查询账户余额为1000元 | |
T5 | 取出100元将余额修改为900元 | |
T6 | 提交事务 | |
T7 | 汇入100元将余额修改为1100元 | |
T8 | 提交事务 | |
T9 | 查询账户余额为1100元(丢失更新) |
隔离级别 | 脏读 | 不可重复读 | 幻读 | 第一类丢失更新 | 第二类丢失更新 |
---|---|---|---|---|---|
READ UNCOMMITED | 允许 | 允许 | 允许 | 不允许 | 允许 |
READ COMMITTED | 不允许 | 允许 | 允许 | 不允许 | 允许 |
REPEATABLE READ | 不允许 | 不允许 | 允许 | 不允许 | 不允许 |
SERIALIZABLE | 不允许 | 不允许 | 不允许 | 不允许 | 不允许 |
数据并发访问所产生的问题,在有些场景下可能是允许的,但是有些场景下可能就是致命的,数据库通常会通过锁机制来解决数据并发访问问题,按锁定对象不同可以分为表级锁和行级锁;按并发事务锁定关系可以分为共享锁和独占锁,具体的内容大家可以自行查阅资料进行了解。
直接使用锁是非常麻烦的,为此数据库为用户提供了自动锁机制,只要用户指定会话的事务隔离级别,数据库就会通过分析SQL语句然后为事务访问的资源加上合适的锁,此外,数据库还会维护这些锁通过各种手段提高系统的性能,这些对用户来说都是透明的(就是说你不用理解,事实上我确实也不知道)。ANSI/ISO SQL 92标准定义了4个等级的事务隔离级别,如下表所示:
隔离级别 | 脏读 | 不可重复读 | 幻读 | 第一类丢失更新 | 第二类丢失更新 |
---|---|---|---|---|---|
READ UNCOMMITED | 允许 | 允许 | 允许 | 不允许 | 允许 |
READ COMMITTED | 不允许 | 允许 | 允许 | 不允许 | 允许 |
REPEATABLE READ | 不允许 | 不允许 | 允许 | 不允许 | 不允许 |
SERIALIZABLE | 不允许 | 不允许 | 不允许 | 不允许 | 不允许 |
需要说明的是,事务隔离级别和数据访问的并发性是对立的,事务隔离级别越高并发性就越差。所以要根据具体的应用来确定合适的事务隔离级别,这个地方没有万能的原则。
-
Java中是如何支持正则表达式操作的?
Java中的String类提供了支持正则表达式操作的方法,包括:matches()、replaceAll()、replaceFirst()、split()。此外,Java中可以用Pattern类表示正则表达式对象,它提供了丰富的API进行各种正则表达式操作,请参考下面面试题的代码。
面试题: - 如果要从字符串中截取第一个英文左括号之前的字符串,例如:北京市(朝阳区)(西城区)(海淀区),截取结果为:北京市,那么正则表达式怎么写?
import java.util.regex.Matcher;
import java.util.regex.Pattern;
class RegExpTest {
public static void main(String[] args) {
String str = "北京市(朝阳区)(西城区)(海淀区)";
Pattern p = Pattern.compile(".*?(?=\\()");
Matcher m = p.matcher(str);
if(m.find()) {
System.out.println(m.group());
}
}
}
说明:上面的正则表达式中使用了懒惰匹配和前瞻,如果不清楚这些内容,推荐读一下网上很有名的《正则表达式30分钟入门教程》。
- 获得一个类的类对象有哪些方式?
- 方法1:类型.class,例如:String.class ;
- 方法2:对象.getClass(),例如:"hello".getClass() ;
- 方法3:Class.forName(),例如:Class.forName("java.lang.String")。
- 如何通过反射创建对象?
- 方法1:通过类对象调用newInstance()方法,例如:String.class.newInstance() ;
- 方法2:通过类对象的getConstructor()或getDeclaredConstructor()方法获得构造器(Constructor)对象并调用其newInstance()方法创建对象,例如:String.class.getConstructor(String.class).newInstance("Hello")。
-
如何通过反射获取和设置对象私有字段的值?
可以通过类对象的getDeclaredField()方法字段(Field)对象,然后再通过字段对象的setAccessible(true)将其设置为可以访问,接下来就可以通过get/set方法来获取/设置字段的值了。下面的代码实现了一个反射的工具类,其中的两个静态方法分别用于获取和设置私有字段的值,字段可以是基本类型也可以是对象类型且支持多级对象操作,例如ReflectionUtil.get(dog, "owner.car.engine.id");可以获得dog对象的主人的汽车的引擎的ID号。
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.List;
/**
* 反射工具类
* @author 骆昊
*
*/
public class ReflectionUtil {
private ReflectionUtil() {
throw new AssertionError();
}
/**
* 通过反射取对象指定字段(属性)的值
* @param target 目标对象
* @param fieldName 字段的名字
* @throws 如果取不到对象指定字段的值则抛出异常
* @return 字段的值
*/
public static Object getValue(Object target, String fieldName) {
Class<?> clazz = target.getClass();
String[] fs = fieldName.split("\\.");
try {
for(int i = 0; i < fs.length - 1; i++) {
Field f = clazz.getDeclaredField(fs[i]);
f.setAccessible(true);
target = f.get(target);
clazz = target.getClass();
}
Field f = clazz.getDeclaredField(fs[fs.length - 1]);
f.setAccessible(true);
return f.get(target);
}
catch (Exception e) {
throw new RuntimeException(e);
}
}
/**
* 通过反射给对象的指定字段赋值
* @param target 目标对象
* @param fieldName 字段的名称
* @param value 值
*/
public static void setValue(Object target, String fieldName, Object value) {
Class<?> clazz = target.getClass();
String[] fs = fieldName.split("\\.");
try {
for(int i = 0; i < fs.length - 1; i++) {
Field f = clazz.getDeclaredField(fs[i]);
f.setAccessible(true);
Object val = f.get(target);
if(val == null) {
Constructor<?> c = f.getType().getDeclaredConstructor();
c.setAccessible(true);
val = c.newInstance();
f.set(target, val);
}
target = val;
clazz = target.getClass();
}
Field f = clazz.getDeclaredField(fs[fs.length - 1]);
f.setAccessible(true);
f.set(target, value);
}
catch (Exception e) {
throw new RuntimeException(e);
}
}
}
-
如何通过反射调用对象的方法?
请看下面的代码:
import java.lang.reflect.Method;
class MethodInvokeTest {
public static void main(String[] args) throws Exception {
String str = "hello";
Method m = str.getClass().getMethod("toUpperCase");
System.out.println(m.invoke(str)); // HELLO
}
}
-
用Java写一个冒泡排序
冒泡排序几乎是个程序员都写得出来,但是面试的时候如何写一个逼格高的冒泡排序却不是每个人都能做到,下面提供一个参考代码:
import java.util.Comparator;
/**
* 排序器接口(策略模式: 将算法封装到具有共同接口的独立的类中使得它们可以相互替换)
* @author骆昊
*
*/
public interface Sorter {
/**
* 排序
* @param list 待排序的数组
*/
public <T extends Comparable<T>> void sort(T[] list);
/**
* 排序
* @param list 待排序的数组
* @param comp 比较两个对象的比较器
*/
public <T> void sort(T[] list, Comparator<T> comp);
}
import java.util.Comparator;
/**
* 冒泡排序
*
* @author骆昊
*
*/
public class BubbleSorter implements Sorter {
@Override
public <T extends Comparable<T>> void sort(T[] list) {
boolean swapped = true;
for (int i = 1, len = list.length; i < len && swapped; ++i) {
swapped = false;
for (int j = 0; j < len - i; ++j) {
if (list[j].compareTo(list[j + 1]) > 0) {
T temp = list[j];
list[j] = list[j + 1];
list[j + 1] = temp;
swapped = true;
}
}
}
}
@Override
public <T> void sort(T[] list, Comparator<T> comp) {
boolean swapped = true;
for (int i = 1, len = list.length; i < len && swapped; ++i) {
swapped = false;
for (int j = 0; j < len - i; ++j) {
if (comp.compare(list[j], list[j + 1]) > 0) {
T temp = list[j];
list[j] = list[j + 1];
list[j + 1] = temp;
swapped = true;
}
}
}
}
}
-
用Java写一个折半查找
折半查找,也称二分查找、二分搜索,是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组已经为空,则表示找不到指定的元素。这种搜索算法每一次比较都使搜索范围缩小一半,其时间复杂度是O(logN)。
import java.util.Comparator;
public class MyUtil {
public static <T extends Comparable<T>> int binarySearch(T[] x, T key) {
return binarySearch(x, 0, x.length- 1, key);
}
// 使用循环实现的二分查找
public static <T> int binarySearch(T[] x, T key, Comparator<T> comp) {
int low = 0;
int high = x.length - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
int cmp = comp.compare(x[mid], key);
if (cmp < 0) {
low= mid + 1;
}
else if (cmp > 0) {
high= mid - 1;
}
else {
return mid;
}
}
return -1;
}
// 使用递归实现的二分查找
private static<T extends Comparable<T>> int binarySearch(T[] x, int low, int high, T key) {
if(low <= high) {
int mid = low + ((high -low) >> 1);
if(key.compareTo(x[mid])== 0) {
return mid;
}
else if(key.compareTo(x[mid])< 0) {
return binarySearch(x,low, mid - 1, key);
}
else {
return binarySearch(x,mid + 1, high, key);
}
}
return -1;
}
}
说明:上面的代码中给出了折半查找的两个版本,一个用递归实现,一个用循环实现。需要注意的是计算中间位置时不应该使用(high+ low) / 2的方式,因为加法运算可能导致整数越界,这里应该使用以下三种方式之一:low + (high - low) / 2或low + (high – low) >> 1或(low + high) >>> 1(>>>是逻辑右移,是不带符号位的右移)
-
Servlet接口中有哪些方法?
Servlet接口定义了5个方法,其中前三个方法与Servlet生命周期相关:
- void init(ServletConfig config) throws ServletException
- void service(ServletRequest req, ServletResponse resp) throws ServletException, java.io.IOException
- void destory()
- java.lang.String getServletInfo()
- ServletConfig getServletConfig()
Web容器加载Servlet并将其实例化后,Servlet生命周期开始,容器运行其init()方法进行Servlet的初始化;请求到达时调用Servlet的service()方法,service()方法会根据需要调用与请求对应的doGet或doPost等方法;当服务器关闭或项目被卸载时服务器会将Servlet实例销毁,此时会调用Servlet的destroy()方法。
- 转发(forward)和重定向(redirect)的区别?
forward是容器中控制权的转向,是服务器请求资源,服务器直接访问目标地址的URL,把那个URL 的响应内容读取过来,然后把这些内容再发给浏览器,浏览器根本不知道服务器发送的内容是从哪儿来的,所以它的地址栏中还是原来的地址。
redirect就是服务器端根据逻辑,发送一个状态码,告诉浏览器重新去请求那个地址,因此从浏览器的地址栏中可以看到跳转后的链接地址,很明显redirect无法访问到服务器保护起来资源,但是可以从一个网站redirect到其他网站。
forward更加高效,所以在满足需要时尽量使用forward(通过调用RequestDispatcher对象的forward()方法,该对象可以通过ServletRequest对象的getRequestDispatcher()方法获得),并且这样也有助于隐藏实际的链接;在有些情况下,比如需要访问一个其它服务器上的资源,则必须使用重定向(通过HttpServletResponse对象调用其sendRedirect()方法实现)。
- get和post请求的区别?
①get请求用来从服务器上获得资源,而post是用来向服务器提交数据;
②get将表单中数据按照name=value的形式,添加到action 所指向的URL 后面,并且两者使用"?"连接,而各个变量之间使用"&"连接;post是将表单中的数据放在HTTP协议的请求头或消息体中,传递到action所指向URL;
③get传输的数据要受到URL长度限制(1024字节);而post可以传输大量的数据,上传文件通常要使用post方式;
④使用get时参数会显示在地址栏上,如果这些数据不是敏感数据,那么可以使用get;对于敏感数据还是应用使用post;
⑤get使用MIME类型application/x-www-form-urlencoded的URL编码(也叫百分号编码)文本的格式传递参数,保证被传送的参数由遵循规范的文本组成,例如一个空格的编码是"%20"。
- 实现会话跟踪的技术有哪些?
由于HTTP协议本身是无状态的,服务器为了区分不同的用户,就需要对用户会话进行跟踪,简单的说就是为用户进行登记,为用户分配唯一的ID,下一次用户在请求中包含此ID,服务器据此判断到底是哪一个用户。
①URL 重写:在URL中添加用户会话的信息作为请求的参数,或者将唯一的会话ID添加到URL结尾以标识一个会话。
②设置表单隐藏域:将和会话跟踪相关的字段添加到隐式表单域中,这些信息不会在浏览器中显示但是提交表单时会提交给服务器。
这两种方式很难处理跨越多个页面的信息传递,因为如果每次都要修改URL或在页面中添加隐式表单域来存储用户会话相关信息,事情将变得非常麻烦。
③cookie:cookie有两种,一种是基于窗口的,浏览器窗口关闭后,cookie就没有了;另一种是将信息存储在一个临时文件中,并设置存在的时间。当用户通过浏览器和服务器建立一次会话后,会话ID就会随响应信息返回存储在基于窗口的cookie中,那就意味着只要浏览器没有关闭,会话没有超时,下一次请求时这个会话ID又会提交给服务器让服务器识别用户身份。会话中可以为用户保存信息。会话对象是在服务器内存中的,而基于窗口的cookie是在客户端内存中的。如果浏览器禁用了cookie,那么就需要通过下面两种方式进行会话跟踪。当然,在使用cookie时要注意几点:首先不要在cookie中存放敏感信息;其次cookie存储的数据量有限(4k),不能将过多的内容存储cookie中;再者浏览器通常只允许一个站点最多存放20个cookie。当然,和用户会话相关的其他信息(除了会话ID)也可以存在cookie方便进行会话跟踪。
④HttpSession:在所有会话跟踪技术中,HttpSession对象是最强大也是功能最多的。当一个用户第一次访问某个网站时会自动创建HttpSession,每个用户可以访问他自己的HttpSession。可以通过HttpServletRequest对象的getSession方法获得HttpSession,通过HttpSession的setAttribute方法可以将一个值放在HttpSession中,通过调用HttpSession对象的getAttribute方法,同时传入属性名就可以获取保存在HttpSession中的对象。与上面三种方式不同的是,HttpSession放在服务器的内存中,因此不要将过大的对象放在里面,即使目前的Servlet容器可以在内存将满时将HttpSession中的对象移到其他存储设备中,但是这样势必影响性能。添加到HttpSession中的值可以是任意Java对象,这个对象最好实现了Serializable接口,这样Servlet容器在必要的时候可以将其序列化到文件中,否则在序列化时就会出现异常。
补充:HTML5中可以使用Web Storage技术通过JavaScript来保存数据,例如可以使用localStorage和sessionStorage来保存用户会话的信息,也能够实现会话跟踪。
- 过滤器有哪些作用和用法?
Java Web开发中的过滤器(filter)是从Servlet 2.3规范开始增加的功能,并在Servlet 2.4规范中得到增强。对Web应用来说,过滤器是一个驻留在服务器端的Web组件,它可以截取客户端和服务器之间的请求与响应信息,并对这些信息进行过滤。当Web容器接受到一个对资源的请求时,它将判断是否有过滤器与这个资源相关联。如果有,那么容器将把请求交给过滤器进行处理。在过滤器中,你可以改变请求的内容,或者重新设置请求的报头信息,然后再将请求发送给目标资源。当目标资源对请求作出响应时候,容器同样会将响应先转发给过滤器,在过滤器中你可以对响应的内容进行转换,然后再将响应发送到客户端。
常见的过滤器用途主要包括:对用户请求进行统一认证、对用户的访问请求进行记录和审核、对用户发送的数据进行过滤或替换、转换图象格式、对响应内容进行压缩以减少传输量、对请求或响应进行加解密处理、触发资源访问事件、对XML的输出应用XSLT等。
和过滤器相关的接口主要有:Filter、FilterConfig和FilterChain。
编码过滤器的例子:
import java.io.IOException;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.annotation.WebFilter;
import javax.servlet.annotation.WebInitParam;
@WebFilter(urlPatterns = { "*" },
initParams = {@WebInitParam(name="encoding", value="utf-8")})
public class CodingFilter implements Filter {
private String defaultEncoding = "utf-8";
@Override
public void destroy() {
}
@Override
public void doFilter(ServletRequest req, ServletResponse resp,
FilterChain chain) throws IOException, ServletException {
req.setCharacterEncoding(defaultEncoding);
resp.setCharacterEncoding(defaultEncoding);
chain.doFilter(req, resp);
}
@Override
public void init(FilterConfig config) throws ServletException {
String encoding = config.getInitParameter("encoding");
if (encoding != null) {
defaultEncoding = encoding;
}
}
}
下载计数过滤器的例子:
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;
@WebFilter(urlPatterns = {"/*"})
public class DownloadCounterFilter implements Filter {
private ExecutorService executorService = Executors.newSingleThreadExecutor();
private Properties downloadLog;
private File logFile;
@Override
public void destroy() {
executorService.shutdown();
}
@Override
public void doFilter(ServletRequest req, ServletResponse resp,
FilterChain chain) throws IOException, ServletException {
HttpServletRequest request = (HttpServletRequest) req;
final String uri = request.getRequestURI();
executorService.execute(new Runnable() {
@Override
public void run() {
String value = downloadLog.getProperty(uri);
if(value == null) {
downloadLog.setProperty(uri, "1");
}
else {
int count = Integer.parseInt(value);
downloadLog.setProperty(uri, String.valueOf(++count));
}
try {
downloadLog.store(new FileWriter(logFile), "");
}
catch (IOException e) {
e.printStackTrace();
}
}
});
chain.doFilter(req, resp);
}
@Override
public void init(FilterConfig config) throws ServletException {
String appPath = config.getServletContext().getRealPath("/");
logFile = new File(appPath, "downloadLog.txt");
if(!logFile.exists()) {
try {
logFile.createNewFile();
}
catch(IOException e) {
e.printStackTrace();
}
}
downloadLog = new Properties();
try {
downloadLog.load(new FileReader(logFile));
} catch (IOException e) {
e.printStackTrace();
}
}
}
说明:这里使用了Servlet 3规范中的注解来部署过滤器,当然也可以在web.xml中使用<filter>和<filter-mapping>标签部署过滤器。
- 监听器有哪些作用和用法?
Java Web开发中的监听器(listener)就是application、session、request三个对象创建、销毁或者往其中添加修改删除属性时自动执行代码的功能组件,如下所示:
①ServletContextListener:对Servlet上下文的创建和销毁进行监听。
②ServletContextAttributeListener:监听Servlet上下文属性的添加、删除和替换。
③HttpSessionListener:对Session的创建和销毁进行监听。
补充:session的销毁有两种情况:1). session超时(可以在web.xml中通过<session-config>/<session-timeout>标签配置超时时间);2). 通过调用session对象的invalidate()方法使session失效。
④HttpSessionAttributeListener:对Session对象中属性的添加、删除和替换进行监听。
⑤ServletRequestListener:对请求对象的初始化和销毁进行监听。
⑥ServletRequestAttributeListener:对请求对象属性的添加、删除和替换进行监听。
下面是一个统计网站最多在线人数监听器的例子。
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;
import javax.servlet.annotation.WebListener;
/**
上下文监听器,在服务器启动时初始化onLineCount和maxOnLineCount两个变量
并将其置于服务器上下文(ServletContext)中,其初始值都是0
*/
@WebListener
public class InitListener implements ServletContextListener {
@Override
public void contextDestroyed(ServletContextEvent evt) {
}
@Override
public void contextInitialized(ServletContextEvent evt) {
evt.getServletContext().setAttribute("onLineCount", 0);
evt.getServletContext().setAttribute("maxOnLineCount", 0);
}
}
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;
import javax.servlet.ServletContext;
import javax.servlet.annotation.WebListener;
import javax.servlet.http.HttpSessionEvent;
import javax.servlet.http.HttpSessionListener;
/**
会话监听器,在用户会话创建和销毁的时候根据情况
修改onLineCount和maxOnLineCount的值
*/
@WebListener
public class MaxCountListener implements HttpSessionListener {
@Override
public void sessionCreated(HttpSessionEvent event) {
ServletContext ctx = event.getSession().getServletContext();
int count = Integer.parseInt(ctx.getAttribute("onLineCount").toString());
count++;
ctx.setAttribute("onLineCount", count);
int maxOnLineCount = Integer.parseInt(ctx.getAttribute("maxOnLineCount").toString());
if (count > maxOnLineCount) {
ctx.setAttribute("maxOnLineCount", count);
DateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
ctx.setAttribute("date", df.format(new Date()));
}
}
@Override
public void sessionDestroyed(HttpSessionEvent event) {
ServletContext app = event.getSession().getServletContext();
int count = Integer.parseInt(app.getAttribute("onLineCount").toString());
count--;
app.setAttribute("onLineCount", count);
}
}
- Servlet 3中的异步处理指的是什么?
在Servlet 3中引入了一项新的技术可以让Servlet异步处理请求。有人可能会质疑,既然都有多线程了,还需要异步处理请求吗?答案是肯定的,因为如果一个任务处理时间相当长,那么Servlet或Filter会一直占用着请求处理线程直到任务结束,随着并发用户的增加,容器将会遭遇线程超出的风险,这这种情况下很多的请求将会被堆积起来而后续的请求可能会遭遇拒绝服务,直到有资源可以处理请求为止。异步特性可以帮助应用节省容器中的线程,特别适合执行时间长而且用户需要得到结果的任务,如果用户不需要得到结果则直接将一个Runnable对象交给Executor并立即返回即可。
下面是一个支持异步处理请求的Servlet的例子。
import java.io.IOException;
import javax.servlet.AsyncContext;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@WebServlet(urlPatterns = {"/async"}, asyncSupported = true)
public class AsyncServlet extends HttpServlet {
private static final long serialVersionUID = 1L;
@Override
public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
// 开启Tomcat异步Servlet支持
req.setAttribute("org.apache.catalina.ASYNC_SUPPORTED", true);
final AsyncContext ctx = req.startAsync(); // 启动异步处理的上下文
// ctx.setTimeout(30000);
ctx.start(new Runnable() {
@Override
public void run() {
// 在此处添加异步处理的代码
ctx.complete();
}
});
}
}
- 如何在基于Java的Web项目中实现文件上传和下载?
在Sevlet 3 以前,Servlet API中没有支持上传功能的API,因此要实现上传功能需要引入第三方工具从POST请求中获得上传的附件或者通过自行处理输入流来获得上传的文件,我们推荐使用Apache的commons-fileupload。
从Servlet 3开始,文件上传变得无比简单,相信看看下面的例子一切都清楚了。
上传页面index.jsp:
<%@ page pageEncoding="utf-8"%>
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Photo Upload</title>
</head>
<body>
<h1>Select your photo and upload</h1>
<hr/>
<div style="color:red;font-size:14px;">${hint}</div>
<form action="UploadServlet" method="post" enctype="multipart/form-data">
Photo file: <input type="file" name="photo" />
<input type="submit" value="Upload" />
</form>
</body>
</html>
支持上传的Servlet:
package com.jackfrued.servlet;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.annotation.MultipartConfig;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.Part;
@WebServlet("/UploadServlet")
@MultipartConfig
public class UploadServlet extends HttpServlet {
private static final long serialVersionUID = 1L;
protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
// 可以用request.getPart()方法获得名为photo的上传附件
// 也可以用request.getParts()获得所有上传附件(多文件上传)
// 然后通过循环分别处理每一个上传的文件
Part part = request.getPart("photo");
if (part != null && part.getSubmittedFileName().length() > 0) {
// 用ServletContext对象的getRealPath()方法获得上传文件夹的绝对路径
String savePath = request.getServletContext().getRealPath("/upload");
// Servlet 3.1规范中可以用Part对象的getSubmittedFileName()方法获得上传的文件名
// 更好的做法是为上传的文件进行重命名(避免同名文件的相互覆盖)
part.write(savePath + "/" + part.getSubmittedFileName());
request.setAttribute("hint", "Upload Successfully!");
} else {
request.setAttribute("hint", "Upload failed!");
}
// 跳转回到上传页面
request.getRequestDispatcher("index.jsp").forward(request, response);
}
}
- 如何设置请求的编码以及响应内容的类型?
通过请求对象(ServletRequest)的setCharacterEncoding(String)方法可以设置请求的编码,其实要彻底解决乱码问题就应该让页面、服务器、请求和响应、Java程序都使用统一的编码,最好的选择当然是UTF-8;
通过响应对象(ServletResponse)的setContentType(String)方法可以设置响应内容的类型,当然也可以通过HttpServletResponsed对象的setHeader(String, String)方法来设置。
- 什么是Web Service(Web服务)?
从表面上看,Web Service就是一个应用程序,它向外界暴露出一个能够通过Web进行调用的API。这就是说,你能够用编程的方法透明的调用这个应用程序,不需要了解它的任何细节,跟你使用的编程语言也没有关系。例如可以创建一个提供天气预报的Web Service,那么无论你用哪种编程语言开发的应用都可以通过调用它的API并传入城市信息来获得该城市的天气预报。
之所以称之为Web Service,是因为它基于HTTP协议传输数据,这使得运行在不同机器上的不同应用无须借助附加的、专门的第三方软件或硬件,就可相互交换数据或集成。
补充:这里必须要提及的一个概念是SOA(Service-Oriented Architecture,面向服务的架构),SOA是一种思想,它将应用程序的不同功能单元通过中立的契约联系起来,独立于硬件平台、操作系统和编程语言,使得各种形式的功能单元能够更好的集成。显然,Web Service是SOA的一种较好的解决方案,它更多的是一种标准,而不是一种具体的技术。
- MyBatis中使用#和$书写占位符有什么区别?
#
将传入的数据都当成一个字符串,会对传入的数据自动加上引号;$
将传入的数据直接显示生成在SQL中。注意:使用$
占位符可能会导致SQL注射攻击,能用#
的地方就不要使用$
,写order by子句的时候应该用$
而不是#
。
- MyBatis中的动态SQL是什么意思?
对于一些复杂的查询,我们可能会指定多个查询条件,但是这些条件可能存在也可能不存在,例如在58同城上面找房子,我们可能会指定面积、楼层和所在位置来查找房源,也可能会指定面积、价格、户型和所在位置来查找房源,此时就需要根据用户指定的条件动态生成SQL语句。如果不使用持久层框架我们可能需要自己拼装SQL语句,还好MyBatis提供了动态SQL的功能来解决这个问题。MyBatis中用于实现动态SQL的元素主要有:
- if
- choose / when / otherwise
- trim
- where
- set
- foreach
下面是映射文件的片段。
<select id="foo" parameterType="Blog" resultType="Blog">
select * from t_blog where 1 = 1
<if test="title != null">
and title = #{title}
</if>
<if test="content != null">
and content = #{content}
</if>
<if test="owner != null">
and owner = #{owner}
</if>
</select>
- 什么是IoC和DI?DI是如何实现的?
IoC叫控制反转,是Inversion of Control的缩写,DI(Dependency Injection)叫依赖注入,是对IoC更简单的诠释。控制反转是把传统上由程序代码直接操控的对象的调用权交给容器,通过容器来实现对象组件的装配和管理。所谓的"控制反转"就是对组件对象控制权的转移,从程序代码本身转移到了外部容器,由容器来创建对象并管理对象之间的依赖关系。IoC体现了好莱坞原则 - "Don’t call me, we will call you"。依赖注入的基本原则是应用组件不应该负责查找资源或者其他依赖的协作对象。配置对象的工作应该由容器负责,查找资源的逻辑应该从应用组件的代码中抽取出来,交给容器来完成。DI是对IoC更准确的描述,即组件之间的依赖关系由容器在运行期决定,形象的来说,即由容器动态的将某种依赖关系注入到组件之中。
举个例子:一个类A需要用到接口B中的方法,那么就需要为类A和接口B建立关联或依赖关系,最原始的方法是在类A中创建一个接口B的实现类C的实例,但这种方法需要开发人员自行维护二者的依赖关系,也就是说当依赖关系发生变动的时候需要修改代码并重新构建整个系统。如果通过一个容器来管理这些对象以及对象的依赖关系,则只需要在类A中定义好用于关联接口B的方法(构造器或setter方法),将类A和接口B的实现类C放入容器中,通过对容器的配置来实现二者的关联。
依赖注入可以通过setter方法注入(设值注入)、构造器注入和接口注入三种方式来实现,Spring支持setter注入和构造器注入,通常使用构造器注入来注入必须的依赖关系,对于可选的依赖关系,则setter注入是更好的选择,setter注入需要类提供无参构造器或者无参的静态工厂方法来创建对象。
- Spring中Bean的作用域有哪些?
在Spring的早期版本中,仅有两个作用域:singleton和prototype,前者表示Bean以单例的方式存在;后者表示每次从容器中调用Bean时,都会返回一个新的实例,prototype通常翻译为原型。
补充:设计模式中的创建型模式中也有一个原型模式,原型模式也是一个常用的模式,例如做一个室内设计软件,所有的素材都在工具箱中,而每次从工具箱中取出的都是素材对象的一个原型,可以通过对象克隆来实现原型模式。
Spring 2.x中针对WebApplicationContext新增了3个作用域,分别是:request(每次HTTP请求都会创建一个新的Bean)、session(同一个HttpSession共享同一个Bean,不同的HttpSession使用不同的Bean)和globalSession(同一个全局Session共享一个Bean)。
说明:单例模式和原型模式都是重要的设计模式。一般情况下,无状态或状态不可变的类适合使用单例模式。在传统开发中,由于DAO持有Connection这个非线程安全对象因而没有使用单例模式;但在Spring环境下,所有DAO类对可以采用单例模式,因为Spring利用AOP和Java API中的ThreadLocal对非线程安全的对象进行了特殊处理。
ThreadLocal为解决多线程程序的并发问题提供了一种新的思路。ThreadLocal,顾名思义是线程的一个本地化对象,当工作于多线程中的对象使用ThreadLocal维护变量时,ThreadLocal为每个使用该变量的线程分配一个独立的变量副本,所以每一个线程都可以独立的改变自己的副本,而不影响其他线程所对应的副本。从线程的角度看,这个变量就像是线程的本地变量。
ThreadLocal类非常简单好用,只有四个方法,能用上的也就是下面三个方法:
- void set(T value):设置当前线程的线程局部变量的值。
- T get():获得当前线程所对应的线程局部变量的值。
- void remove():删除当前线程中线程局部变量的值。
ThreadLocal是如何做到为每一个线程维护一份独立的变量副本的呢?在ThreadLocal类中有一个Map,键为线程对象,值是其线程对应的变量的副本,自己要模拟实现一个ThreadLocal类其实并不困难,代码如下所示:
补充:ThreadLocal的本质不是维护一个Map,并且key也不是当前线程对象。
正确应该是:
1.每个Thread类对象都有一个字段:ThreadLocalMap 对象
2.ThreadLocal的set()方法,是把当前线程的数据副本保存在当前线程的ThreadLocalMap字段里面,ThreadLocalMap这个字段类似HashMap,存进去的时候,key是ThreadLocal对象,
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
public class MyThreadLocal<T> {
private Map<Thread, T> map = Collections.synchronizedMap(new HashMap<Thread, T>());
public void set(T newValue) {
map.put(Thread.currentThread(), newValue);
}
public T get() {
return map.get(Thread.currentThread());
}
public void remove() {
map.remove(Thread.currentThread());
}
}
- 解释一下什么叫AOP(面向切面编程)?
AOP(Aspect-Oriented Programming)指一种程序设计范型,该范型以一种称为切面(aspect)的语言构造为基础,切面是一种新的模块化机制,用来描述分散在对象、类或方法中的横切关注点(crosscutting concern)。
- 你如何理解AOP中的连接点(Joinpoint)、切点(Pointcut)、增强(Advice)、引介(Introduction)、织入(Weaving)、切面(Aspect)这些概念?
a. 连接点(Joinpoint):程序执行的某个特定位置(如:某个方法调用前、调用后,方法抛出异常后)。一个类或一段程序代码拥有一些具有边界性质的特定点,这些代码中的特定点就是连接点。Spring仅支持方法的连接点。
b. 切点(Pointcut):如果连接点相当于数据中的记录,那么切点相当于查询条件,一个切点可以匹配多个连接点。Spring AOP的规则解析引擎负责解析切点所设定的查询条件,找到对应的连接点。
c. 增强(Advice):增强是织入到目标类连接点上的一段程序代码。Spring提供的增强接口都是带方位名的,如:BeforeAdvice、AfterReturningAdvice、ThrowsAdvice等。很多资料上将增强译为“通知”,这明显是个词不达意的翻译,让很多程序员困惑了许久。
说明: Advice在国内的很多书面资料中都被翻译成"通知",但是很显然这个翻译无法表达其本质,有少量的读物上将这个词翻译为"增强",这个翻译是对Advice较为准确的诠释,我们通过AOP将横切关注功能加到原有的业务逻辑上,这就是对原有业务逻辑的一种增强,这种增强可以是前置增强、后置增强、返回后增强、抛异常时增强和包围型增强。
d. 引介(Introduction):引介是一种特殊的增强,它为类添加一些属性和方法。这样,即使一个业务类原本没有实现某个接口,通过引介功能,可以动态的未该业务类添加接口的实现逻辑,让业务类成为这个接口的实现类。
e. 织入(Weaving):织入是将增强添加到目标类具体连接点上的过程,AOP有三种织入方式:①编译期织入:需要特殊的Java编译期(例如AspectJ的ajc);②装载期织入:要求使用特殊的类加载器,在装载类的时候对类进行增强;③运行时织入:在运行时为目标类生成代理实现增强。Spring采用了动态代理的方式实现了运行时织入,而AspectJ采用了编译期织入和装载期织入的方式。
f. 切面(Aspect):切面是由切点和增强(引介)组成的,它包括了对横切关注功能的定义,也包括了对连接点的定义。
补充:代理模式是GoF提出的23种设计模式中最为经典的模式之一,代理模式是对象的结构模式,它给某一个对象提供一个代理对象,并由代理对象控制对原对象的引用。简单的说,代理对象可以完成比原对象更多的职责,当需要为原对象添加横切关注功能时,就可以使用原对象的代理对象。我们在打开Office系列的Word文档时,如果文档中有插图,当文档刚加载时,文档中的插图都只是一个虚框占位符,等用户真正翻到某页要查看该图片时,才会真正加载这张图,这其实就是对代理模式的使用,代替真正图片的虚框就是一个虚拟代理;Hibernate的load方法也是返回一个虚拟代理对象,等用户真正需要访问对象的属性时,才向数据库发出SQL语句获得真实对象。
下面用一个找枪手代考的例子演示代理模式的使用:
/**
* 参考人员接口
* @author 骆昊
*
*/
public interface Candidate {
/**
* 答题
*/
public void answerTheQuestions();
}
/**
* 懒学生
* @author 骆昊
*
*/
public class LazyStudent implements Candidate {
private String name; // 姓名
public LazyStudent(String name) {
this.name = name;
}
@Override
public void answerTheQuestions() {
// 懒学生只能写出自己的名字不会答题
System.out.println("姓名: " + name);
}
}
/**
* 枪手
* @author 骆昊
*
*/
public class Gunman implements Candidate {
private Candidate target; // 被代理对象
public Gunman(Candidate target) {
this.target = target;
}
@Override
public void answerTheQuestions() {
// 枪手要写上代考的学生的姓名
target.answerTheQuestions();
// 枪手要帮助懒学生答题并交卷
System.out.println("奋笔疾书正确答案");
System.out.println("交卷");
}
}
public class ProxyTest1 {
public static void main(String[] args) {
Candidate c = new Gunman(new LazyStudent("王小二"));
c.answerTheQuestions();
}
}
说明:从JDK 1.3开始,Java提供了动态代理技术,允许开发者在运行时创建接口的代理实例,主要包括Proxy类和InvocationHandler接口。下面的例子使用动态代理为ArrayList编写一个代理,在添加和删除元素时,在控制台打印添加或删除的元素以及ArrayList的大小:
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.util.List;
public class ListProxy<T> implements InvocationHandler {
private List<T> target;
public ListProxy(List<T> target) {
this.target = target;
}
@Override
public Object invoke(Object proxy, Method method, Object[] args)
throws Throwable {
Object retVal = null;
System.out.println("[" + method.getName() + ": " + args[0] + "]");
retVal = method.invoke(target, args);
System.out.println("[size=" + target.size() + "]");
return retVal;
}
}
import java.lang.reflect.Proxy;
import java.util.ArrayList;
import java.util.List;
public class ProxyTest2 {
@SuppressWarnings("unchecked")
public static void main(String[] args) {
List<String> list = new ArrayList<String>();
Class<?> clazz = list.getClass();
ListProxy<String> myProxy = new ListProxy<String>(list);
List<String> newList = (List<String>)
Proxy.newProxyInstance(clazz.getClassLoader(),
clazz.getInterfaces(), myProxy);
newList.add("apple");
newList.add("banana");
newList.add("orange");
newList.remove("banana");
}
}
说明:使用Java的动态代理有一个局限性就是代理的类必须要实现接口,虽然面向接口编程是每个优秀的Java程序都知道的规则,但现实往往不尽如人意,对于没有实现接口的类如何为其生成代理呢?继承!继承是最经典的扩展已有代码能力的手段,虽然继承常常被初学者滥用,但继承也常常被进阶的程序员忽视。CGLib采用非常底层的字节码生成技术,通过为一个类创建子类来生成代理,它弥补了Java动态代理的不足,因此Spring中动态代理和CGLib都是创建代理的重要手段,对于实现了接口的类就用动态代理为其生成代理类,而没有实现接口的类就用CGLib通过继承的方式为其创建代理。
- Spring MVC的工作原理是怎样的?
Spring MVC的工作原理如下图所示:
① 客户端的所有请求都交给前端控制器DispatcherServlet来处理,它会负责调用系统的其他模块来真正处理用户的请求。
② DispatcherServlet收到请求后,将根据请求的信息(包括URL、HTTP协议方法、请求头、请求参数、Cookie等)以及HandlerMapping的配置找到处理该请求的Handler(任何一个对象都可以作为请求的Handler)。
③在这个地方Spring会通过HandlerAdapter对该处理器进行封装。
④ HandlerAdapter是一个适配器,它用统一的接口对各种Handler中的方法进行调用。
⑤ Handler完成对用户请求的处理后,会返回一个ModelAndView对象给DispatcherServlet,ModelAndView顾名思义,包含了数据模型以及相应的视图的信息。
⑥ ModelAndView的视图是逻辑视图,DispatcherServlet还要借助ViewResolver完成从逻辑视图到真实视图对象的解析工作。
⑦ 当得到真正的视图对象后,DispatcherServlet会利用视图对象对模型数据进行渲染。
⑧ 客户端得到响应,可能是一个普通的HTML页面,也可以是XML或JSON字符串,还可以是一张图片或者一个PDF文件。
- 选择使用Spring框架的原因(Spring框架为企业级开发带来的好处有哪些)?
可以从以下几个方面作答:
- 非侵入式:支持基于POJO的编程模式,不强制性的要求实现Spring框架中的接口或继承Spring框架中的类。
- IoC容器:IoC容器帮助应用程序管理对象以及对象之间的依赖关系,对象之间的依赖关系如果发生了改变只需要修改配置文件而不是修改代码,因为代码的修改可能意味着项目的重新构建和完整的回归测试。有了IoC容器,程序员再也不需要自己编写工厂、单例,这一点特别符合Spring的精神"不要重复的发明轮子"。
- AOP(面向切面编程):将所有的横切关注功能封装到切面(aspect)中,通过配置的方式将横切关注功能动态添加到目标代码上,进一步实现了业务逻辑和系统服务之间的分离。另一方面,有了AOP程序员可以省去很多自己写代理类的工作。
- MVC:Spring的MVC框架是非常优秀的,从各个方面都可以甩Struts 2几条街,为Web表示层提供了更好的解决方案。
- 事务管理:Spring以宽广的胸怀接纳多种持久层技术,并且为其提供了声明式的事务管理,在不需要任何一行代码的情况下就能够完成事务管理。
- 其他:选择Spring框架的原因还远不止于此,Spring为Java企业级开发提供了一站式选择,你可以在需要的时候使用它的部分和全部,更重要的是,你甚至可以在感觉不到Spring存在的情况下,在你的项目中使用Spring提供的各种优秀的功能。
- 阐述Spring框架中Bean的生命周期?
① Spring IoC容器找到关于Bean的定义并实例化该Bean。
② Spring IoC容器对Bean进行依赖注入。
③ 如果Bean实现了BeanNameAware接口,则将该Bean的id传给setBeanName方法。
④ 如果Bean实现了BeanFactoryAware接口,则将BeanFactory对象传给setBeanFactory方法。
⑤ 如果Bean实现了BeanPostProcessor接口,则调用其postProcessBeforeInitialization方法。
⑥ 如果Bean实现了InitializingBean接口,则调用其afterPropertySet方法。
⑦ 如果有和Bean关联的BeanPostProcessors对象,则这些对象的postProcessAfterInitialization方法被调用。
⑧ 当销毁Bean实例时,如果Bean实现了DisposableBean接口,则调用其destroy方法。
- 在Web项目中如何获得Spring的IoC容器?
WebApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext(servletContext);
55.大型网站在架构上应当考虑哪些问题?
- 分层:分层是处理任何复杂系统最常见的手段之一,将系统横向切分成若干个层面,每个层面只承担单一的职责,然后通过下层为上层提供的基础设施和服务以及上层对下层的调用来形成一个完整的复杂的系统。计算机网络的开放系统互联参考模型(OSI/RM)和Internet的TCP/IP模型都是分层结构,大型网站的软件系统也可以使用分层的理念将其分为持久层(提供数据存储和访问服务)、业务层(处理业务逻辑,系统中最核心的部分)和表示层(系统交互、视图展示)。需要指出的是:(1)分层是逻辑上的划分,在物理上可以位于同一设备上也可以在不同的设备上部署不同的功能模块,这样可以使用更多的计算资源来应对用户的并发访问;(2)层与层之间应当有清晰的边界,这样分层才有意义,才更利于软件的开发和维护。
- 分割:分割是对软件的纵向切分。我们可以将大型网站的不同功能和服务分割开,形成高内聚低耦合的功能模块(单元)。在设计初期可以做一个粗粒度的分割,将网站分割为若干个功能模块,后期还可以进一步对每个模块进行细粒度的分割,这样一方面有助于软件的开发和维护,另一方面有助于分布式的部署,提供网站的并发处理能力和功能的扩展。
- 分布式:除了上面提到的内容,网站的静态资源(JavaScript、CSS、图片等)也可以采用独立分布式部署并采用独立的域名,这样可以减轻应用服务器的负载压力,也使得浏览器对资源的加载更快。数据的存取也应该是分布式的,传统的商业级关系型数据库产品基本上都支持分布式部署,而新生的NoSQL产品几乎都是分布式的。当然,网站后台的业务处理也要使用分布式技术,例如查询索引的构建、数据分析等,这些业务计算规模庞大,可以使用Hadoop以及MapReduce分布式计算框架来处理。
- 集群:集群使得有更多的服务器提供相同的服务,可以更好的提供对并发的支持。
- 缓存:所谓缓存就是用空间换取时间的技术,将数据尽可能放在距离计算最近的位置。使用缓存是网站优化的第一定律。我们通常说的CDN、反向代理、热点数据都是对缓存技术的使用。
- 异步:异步是实现软件实体之间解耦合的又一重要手段。异步架构是典型的生产者消费者模式,二者之间没有直接的调用关系,只要保持数据结构不变,彼此功能实现可以随意变化而不互相影响,这对网站的扩展非常有利。使用异步处理还可以提高系统可用性,加快网站的响应速度(用Ajax加载数据就是一种异步技术),同时还可以起到削峰作用(应对瞬时高并发)。";能推迟处理的都要推迟处理"是网站优化的第二定律,而异步是践行网站优化第二定律的重要手段。
- 冗余:各种服务器都要提供相应的冗余服务器以便在某台或某些服务器宕机时还能保证网站可以正常工作,同时也提供了灾难恢复的可能性。冗余是网站高可用性的重要保证。
- 你使用过的应用服务器优化技术有哪些?
① 分布式缓存:缓存的本质就是内存中的哈希表,如果设计一个优质的哈希函数,那么理论上哈希表读写的渐近时间复杂度为O(1)。缓存主要用来存放那些读写比很高、变化很少的数据,这样应用程序读取数据时先到缓存中读取,如果没有或者数据已经失效再去访问数据库或文件系统,并根据拟定的规则将数据写入缓存。对网站数据的访问也符合二八定律(Pareto分布,幂律分布),即80%的访问都集中在20%的数据上,如果能够将这20%的数据缓存起来,那么系统的性能将得到显著的改善。当然,使用缓存需要解决以下几个问题:
- 频繁修改的数据;
- 数据不一致与脏读;
- 缓存雪崩(可以采用分布式缓存服务器集群加以解决,memcached是广泛采用的解决方案);
- 缓存预热;
- 缓存穿透(恶意持续请求不存在的数据)。
② 异步操作:可以使用消息队列将调用异步化,通过异步处理将短时间高并发产生的事件消息存储在消息队列中,从而起到削峰作用。电商网站在进行促销活动时,可以将用户的订单请求存入消息队列,这样可以抵御大量的并发订单请求对系统和数据库的冲击。目前,绝大多数的电商网站即便不进行促销活动,订单系统都采用了消息队列来处理。
③ 使用集群。
④ 代码优化:
- 多线程:基于Java的Web开发基本上都通过多线程的方式响应用户的并发请求,使用多线程技术在编程上要解决线程安全问题,主要可以考虑以下几个方面:A. 将对象设计为无状态对象(这和面向对象的编程观点是矛盾的,在面向对象的世界中被视为不良设计),这样就不会存在并发访问时对象状态不一致的问题。B. 在方法内部创建对象,这样对象由进入方法的线程创建,不会出现多个线程访问同一对象的问题。使用ThreadLocal将对象与线程绑定也是很好的做法,这一点在前面已经探讨过了。C. 对资源进行并发访问时应当使用合理的锁机制。
- 非阻塞I/O: 使用单线程和非阻塞I/O是目前公认的比多线程的方式更能充分发挥服务器性能的应用模式,基于Node.js构建的服务器就采用了这样的方式。Java在JDK 1.4中就引入了NIO(Non-blocking I/O),在Servlet 3规范中又引入了异步Servlet的概念,这些都为在服务器端采用非阻塞I/O提供了必要的基础。
- 资源复用:资源复用主要有两种方式,一是单例,二是对象池,我们使用的数据库连接池、线程池都是对象池化技术,这是典型的用空间换取时间的策略,另一方面也实现对资源的复用,从而避免了不必要的创建和释放资源所带来的开销。
- 什么是XSS攻击?什么是SQL注入攻击?什么是CSRF攻击?
- XSS(Cross Site Script,跨站脚本攻击)是向网页中注入恶意脚本在用户浏览网页时在用户浏览器中执行恶意脚本的攻击方式。跨站脚本攻击分有两种形式:反射型攻击(诱使用户点击一个嵌入恶意脚本的链接以达到攻击的目标,目前有很多攻击者利用论坛、微博发布含有恶意脚本的URL就属于这种方式)和持久型攻击(将恶意脚本提交到被攻击网站的数据库中,用户浏览网页时,恶意脚本从数据库中被加载到页面执行,QQ邮箱的早期版本就曾经被利用作为持久型跨站脚本攻击的平台)。XSS虽然不是什么新鲜玩意,但是攻击的手法却不断翻新,防范XSS主要有两方面:消毒(对危险字符进行转义)和HttpOnly(防范XSS攻击者窃取Cookie数据)。
- SQL注入攻击是注入攻击最常见的形式(此外还有OS注入攻击(Struts 2的高危漏洞就是通过OGNL实施OS注入攻击导致的)),当服务器使用请求参数构造SQL语句时,恶意的SQL被嵌入到SQL中交给数据库执行。SQL注入攻击需要攻击者对数据库结构有所了解才能进行,攻击者想要获得表结构有多种方式:(1)如果使用开源系统搭建网站,数据库结构也是公开的(目前有很多现成的系统可以直接搭建论坛,电商网站,虽然方便快捷但是风险是必须要认真评估的);(2)错误回显(如果将服务器的错误信息直接显示在页面上,攻击者可以通过非法参数引发页面错误从而通过错误信息了解数据库结构,Web应用应当设置友好的错误页,一方面符合最小惊讶原则,一方面屏蔽掉可能给系统带来危险的错误回显信息);(3)盲注。防范SQL注入攻击也可以采用消毒的方式,通过正则表达式对请求参数进行验证,此外,参数绑定也是很好的手段,这样恶意的SQL会被当做SQL的参数而不是命令被执行,JDBC中的PreparedStatement就是支持参数绑定的语句对象,从性能和安全性上都明显优于Statement。
-
CSRF攻击(Cross Site Request Forgery,跨站请求伪造)是攻击者通过跨站请求,以合法的用户身份进行非法操作(如转账或发帖等)。CSRF的原理是利用浏览器的Cookie或服务器的Session,盗取用户身份,其原理如下图所示。防范CSRF的主要手段是识别请求者的身份,主要有以下几种方式:(1)在表单中添加令牌(token);(2)验证码;(3)检查请求头中的Referer(前面提到防图片盗链接也是用的这种方式)。令牌和验证都具有一次消费性的特征,因此在原理上一致的,但是验证码是一种糟糕的用户体验,不是必要的情况下不要轻易使用验证码,目前很多网站的做法是如果在短时间内多次提交一个表单未获得成功后才要求提供验证码,这样会获得较好的用户体验。
补充:防火墙的架设是Web安全的重要保障,ModSecurity是开源的Web防火墙中的佼佼者。企业级防火墙的架设应当有两级防火墙,Web服务器和部分应用服务器可以架设在两级防火墙之间的DMZ,而数据和资源服务器应当架设在第二级防火墙之后。