七、Azkaban企业应用实例

一、业务场景

在广告追踪系统中,我们通过提供SDK给用户,把各种各样的用户数据采集到我们的服务器中,然后通过MR计算,统计各种输出。在本文中,笔者将抽取其中一种业务场景:计算用户留存和付费LTV。

为了计算以上两个指标,需要采集三类数据:账户的激活、在线、付费记录。其中用户留存和付费LTV的计算过程如下:

1、用户留存:把用户今天在线的数据,与一个月内的用户激活数据做对比,找出今天在线的用户,是在那天激活的,并计算出差别的天数,这就是用户留存的计算方法。

2、付费LTV:找出今天哪些用户付费了,把这些用户,与一个月内的用户激活数据做对比,找出今天付费的用户,是在那天激活的,并计算出差别的天数,然后把今天付费的总额,除以差别的天数,得出付费LTV。

出于对公司数据安全考虑,这里不会贴出任何数据和计算代码,只会把与Azkaban相关的job信息和思路写出来,读者可以作为参考。

二、处理思路

1、原始的用户数据是混合在一起的,都放在按天分区的hdfs的指定目录下,这样,我们就需要写一个作为数据清洗的MR类,把原始日志中的在线,激活,付费三类数据分别输出到独立的文件中。这在hadoopMR中可以通过输出文件后缀的方式进行区分。

2、完成第一步后,我们需要把三类数据分别进行统计,比如按照appid进行统计,币别需要转换,激活时间需要从时间戳转换为日期等步骤。

3、第三步就需要把这三类数据分别入库到hive中,供后面的hiveSQL进行join操作。

4、把在线数据与激活数据做join,得出用户留存;把付费数据与激活数据做join,得出付费LTV。这两类数据计算完成后,需要入库到新的表中。

5、最后在kylin中进行计算,用户就可以在kylin中查询统计结果了。

总的数据处理流程如下:

Total Task

三、具体job编写

1、logStat.job:数据拆分

type=hadoopJava

job.extend=true

force.output.overwrite=true

mapred.mapper.new-api=true

mapred.reducer.new-api=true

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs

tmpjars=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/ad-tracker-mr2-1.0.0-SNAPSHOT-jar-with-dependencies.jar


input.path=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD-1}/*/input/self-event*

output.path=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/TrackingLogStat

calculate.date=all


job.class=com.dataeye.tracker.mr.mapred.actionpay.LogStatMapper


mapreduce.map.class=com.dataeye.tracker.mr.mapred.actionpay.LogStatMapper

mapreduce.reduce.class=com.dataeye.tracker.mr.mapred.actionpay.LogStatReducer


mapred.mapoutput.key.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel

mapred.mapoutput.value.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel


mapred.output.key.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel

mapred.output.value.class=org.apache.hadoop.io.NullWritable


mapreduce.inputformat.class=org.apache.hadoop.mapreduce.lib.input.TextInputFormat

mapreduce.outputformat.class=com.dataeye.tracker.mr.common.SuffixMultipleOutputFormat

2、onlineLogStat.job:在线数据清洗

type=hadoopJava

job.extend=true

force.output.overwrite=true

mapred.mapper.new-api=true

mapred.reducer.new-api=true

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs


input.path=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/TrackingLogStat/*TRACING_ACTIVE_LOG_ONLINE

output.path=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/adtOnlineLogStat

calculate.date=${DD:YYYY}-${DD:MM}-${DD:DD}


job.class=com.dataeye.tracker.mr.mapred.actionpay.OnlineLogStatMapper


mapreduce.map.class=com.dataeye.tracker.mr.mapred.actionpay.OnlineLogStatMapper

mapreduce.reduce.class=com.dataeye.tracker.mr.mapred.actionpay.OnlineLogStatReducer


mapred.mapoutput.key.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel

mapred.mapoutput.value.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel


mapred.output.key.class=org.apache.hadoop.io.Text

mapred.output.value.class=org.apache.hadoop.io.NullWritable


mapreduce.inputformat.class=org.apache.hadoop.mapreduce.lib.input.TextInputFormat

mapreduce.outputformat.class=org.apache.hadoop.mapreduce.lib.output.TextOutputFormat

dependencies=logStat

3、activeLogStat.job:激活数据清洗

type=hadoopJava

job.extend=true

force.output.overwrite=true

mapred.mapper.new-api=true

mapred.reducer.new-api=true

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs


input.path=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/TrackingLogStat/*TRACING_ACTIVE_LOG_ACTIVE,/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD-1}/00/adtActiveLogStat

output.path=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/adtActiveLogStat

calculate.date=${DD:YYYY}-${DD:MM}-${DD:DD}


job.class=com.dataeye.tracker.mr.mapred.actionpay.ActiveLogStatMapper


mapreduce.map.class=com.dataeye.tracker.mr.mapred.actionpay.ActiveLogStatMapper

mapreduce.reduce.class=com.dataeye.tracker.mr.mapred.actionpay.ActiveLogStatReducer


mapred.mapoutput.key.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel

mapred.mapoutput.value.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel


mapred.output.key.class=org.apache.hadoop.io.Text

mapred.output.value.class=org.apache.hadoop.io.NullWritable


mapreduce.inputformat.class=org.apache.hadoop.mapreduce.lib.input.TextInputFormat

mapreduce.outputformat.class=org.apache.hadoop.mapreduce.lib.output.TextOutputFormat

dependencies=logStat

4、paymentLogStat.job:付费数据清洗

type=hadoopJava

job.extend=true

force.output.overwrite=true

mapred.mapper.new-api=true

mapred.reducer.new-api=true

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs


input.path=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/TrackingLogStat/*TRACING_ACTIVE_LOG_PAYMENT

output.path=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/adtPaymentLogStat

calculate.date=${DD:YYYY}-${DD:MM}-${DD:DD}


job.class=com.dataeye.tracker.mr.mapred.actionpay.PaymentLogStatMapper


mapreduce.map.class=com.dataeye.tracker.mr.mapred.actionpay.PaymentLogStatMapper

mapreduce.reduce.class=com.dataeye.tracker.mr.mapred.actionpay.PaymentLogStatReducer


mapred.mapoutput.key.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel

mapred.mapoutput.value.class=com.dataeye.tracker.mr.common.OutFieldsBaseModel


mapred.output.key.class=org.apache.hadoop.io.Text

mapred.output.value.class=org.apache.hadoop.io.NullWritable


mapreduce.inputformat.class=org.apache.hadoop.mapreduce.lib.input.TextInputFormat

mapreduce.outputformat.class=org.apache.hadoop.mapreduce.lib.output.TextOutputFormat

dependencies=logStat

5、onlineHive.job:在线数据入库

type=hive

user.to.proxy=azkaban

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs

azk.hive.action=execute.query

hive.script = res/hive_online.sql

dataPath=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/adtOnlineLogStat

day_p=${DD:YYYY}-${DD:MM}-${DD:DD-1}

dependencies=onlineLogStat

hive_online.sql:

use azkaban;

load data inpath '${dataPath}' overwrite into table adt_logstat_online PARTITION(day_p='${day_p}');

6、activeHive.job:激活数据入库

type=hive

user.to.proxy=azkaban

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs

azk.hive.action=execute.query

hive.script = res/hive_active.sql

dataPath=hdfs://de-hdfs/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/adtActiveLogStat

day_p=${DD:YYYY}-${DD:MM}-${DD:DD-1}

dependencies=activeLogStat

hive_active.sql


use azkaban;

alter table adt_logstat_active_ext set location '${dataPath}';

INSERT overwrite TABLE adt_logstat_active PARTITION (day_p='${day_p}') SELECT appid,channel,compaign,publisher,site,country,province,city,deviceId,activeDate FROM adt_logstat_active_ext;

7、paymentHive.job:付费数据入库

type=hive

user.to.proxy=azkaban

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs

azk.hive.action=execute.query

hive.script = res/hive_payment.sql

dataPath=/user/tracking/event_logserver/${DD:YYYY}/${DD:MM}/${DD:DD}/00/adtPaymentLogStat

day_p=${DD:YYYY}-${DD:MM}-${DD:DD-1}

dependencies=paymentLogStat

hive_payment.sql

use azkaban;

load data inpath '${dataPath}' overwrite into table adt_logstat_payment PARTITION(day_p='${day_p}');

8、activeOnlineHive.job:用户留存统计

type=hive

user.to.proxy=azkaban

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs

azk.hive.action=execute.query

hive.script = res/hive_active_online.sql

now_day=${DD:YYYY}-${DD:MM}-${DD:DD-1}

bef_day=${DD:YYYY}-${DD:MM}-${DD:DD-3}

dependencies=activeHive,onlineHive

hive_active_online.sql

use azkaban;

INSERT overwrite TABLE user_retain_roll PARTITION (day_p='${now_day}') SELECT av.appid as appid, ol.channel as channel,ol.compaign as compaign,ol.publisher as publisher,ol.site as site, count(av.deviceId) AS total FROM adt_logstat_online AS ol INNER JOIN adt_logstat_active AS av ON ol.deviceId = av.deviceId and ol.appid = av.appid WHERE ol.day_p = '${now_day}' AND av.activeDate BETWEEN '${bef_day}' AND '${now_day}' GROUP BY av.appid, ol.channel,ol.compaign,ol.publisher,ol.site,av.activeDate;

9、activePaymentHive.job:付费LTV统计

type=hive

user.to.proxy=azkaban

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs

azk.hive.action=execute.query

hive.script = res/hive_active_payment.sql

now_day=${DD:YYYY}-${DD:MM}-${DD:DD-1}

bef_day=${DD:YYYY}-${DD:MM}-${DD:DD-3}

dependencies=activeHive,paymentHive

hive_active_payment.sql

use azkaban;

INSERT overwrite TABLE user_retain_ltv PARTITION (day_p='${now_day}') select  av.appid as appid, py.channel as channel,py.compaign as compaign,py.publisher as publisher,py.site as site, py.deviceId as deviceId, py.paymentCount AS payment from adt_logstat_payment as py  inner join adt_logstat_active as av on av.deviceId = py.deviceId and av.appid = py.appid where py.day_p = '${now_day}' and av.day_p = '${now_day}';

10、kylin.job:kylin计算

type=hadoopJava

job.extend=false

job.class=com.dataeye.kylin.azkaban.JavaMain

classpath=./lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/lib/*,/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/extlib/*

jvm.args=-Dlog4j.log.dir=/home/hadoop2/azkaban/azkaban-solo-server-3.0.0/logs


kylin.url=http://mysql8:7070/kylin/api

cube.name=user_retain_roll_cube,user_retain_ltv_cube

cube.date=${DD:YYYY}-${DD:MM}-${DD:DD-1}

dependencies=activeOnlineHive,activePaymentHive

四、打包运行

打包过程与之前一致,最终的目录结构如下:

目录结构

运行结果如下:

Success Task

可以查看执行日志:

Success Task Detail
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容