Nature Genetics | 历经8年,中德美科学家联合首次发现玉米根系驯化及环境适应性遗传机理

<section data-author="Wxeditor" style="margin-bottom: 0px; letter-spacing: 0.578px; white-space: normal; word-break: break-all !important; visibility: visible;"><section style="margin-right: 8px; margin-left: 8px; letter-spacing: 0.578px; white-space: normal; visibility: visible;"><span style="font-size: 16px; visibility: visible;"><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;">2024<span style="font-family: 仿宋; visibility: visible;">年</span>5<span style="font-family: 仿宋; visibility: visible;">月</span>22<span style="font-family: 仿宋; visibility: visible;">日</span></span><strong style="visibility: visible;"><em style="visibility: visible;"><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;">Nature Genetics</span></em></strong><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;"> (doi:</span><span style="font-family: "Times New Roman"; visibility: visible;"> </span><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;">10.1038/s41588-024-01761-3)</span></span><span style="font-size: 16px; visibility: visible;"><span style="color: rgb(51, 51, 51); letter-spacing: 0.35pt; font-family: 仿宋; visibility: visible;">发表论文</span></span><span style="font-size: 16px; visibility: visible;"><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;">“</span><strong style="visibility: visible;"><em style="visibility: visible;"><span style="font-family: "Times New Roman"; color: rgb(0, 112, 192); letter-spacing: 0.35pt; visibility: visible;">Seedling root system adaptation to water availability during maize domestication and global expansion</span></em></strong><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;">”<span style="font-family: 仿宋; visibility: visible;">。</span><o:p style="visibility: visible;"></o:p></span></span></section><p style="text-align: center; visibility: visible;"><img class="rich_pages wxw-img" data-galleryid="" data-imgfileid="100116685" data-ratio="0.5851851851851851" data-s="300,640" data-src="https://mmbiz.qpic.cn/sz_mmbiz_png/BI9DBRVfPTS2uuWnaRzS39kkOicJMSRUEu9zBxFlfrbQpt6qO9ANhcibnEpiag6ag8ljicC3aNRWFPAnorapxg04yQ/640?wx_fmt=png&from=appmsg" data-type="png" data-w="1080" style="height: auto !important; visibility: visible !important; width: 677px !important;" data-original-style="" data-index="2" src="https://upload-images.jianshu.io/upload_images/7698829-30979eb21214aa74.png" _width="677px" crossorigin="anonymous" alt="图片" data-fail="0"></p><section style="margin-right: 8px; margin-left: 8px; letter-spacing: 0.578px; white-space: normal; visibility: visible;"><span style="font-size: 16px; visibility: visible;"><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;"><span style="font-family: 仿宋; visibility: visible;">该研究首次揭示禾本科作物玉米在驯化及全球适应性过程中,种子根系的形成与水分全球地理性分布高度吻合,解析了种子根系形成的遗传基础及适应性轨迹;通过根系原位可视化技术及根系结构功能模型量化种子根变化系统影响整个根系形态及水分吸收的贡献;通过</span>GWAS<span style="font-family: 仿宋; visibility: visible;">和基因编辑技术</span></span><span style="color: rgb(51, 51, 51); letter-spacing: 0.35pt; font-family: 仿宋; visibility: visible;">挖掘出控制种子根数目的关键基因</span><strong style="visibility: visible;"><em style="visibility: visible;"><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;">ZmHB77</span></em></strong><span style="color: rgb(51, 51, 51); letter-spacing: 0.35pt; font-family: 仿宋; visibility: visible;">,其调节根系结构及玉米苗期抗旱性,最后通过一系列遗传分析发现</span><em style="visibility: visible;"><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;">ZmHB77</span></em><span style="color: rgb(51, 51, 51); letter-spacing: 0.35pt; font-family: 仿宋; visibility: visible;">基因适应自然环境变异,驱动根系结构形态变异与抗旱性共选择及适应的特性。该研究为理解作物驯化、根系遗传及生态适应性提供了典型范例,并为</span><span style="font-family: "Times New Roman"; color: rgb(51, 51, 51); letter-spacing: 0.35pt; visibility: visible;"><span style="font-family: 仿宋; visibility: visible;">可持续农业发展及应对未来气候变化奠定了重要的理论依据。</span><o:p style="visibility: visible;"></o:p></span></span></section><section style="margin-right: 8px; margin-left: 8px; letter-spacing: 0.578px; white-space: normal; visibility: visible;"><span style="font-size: 16px;"><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">该研究由国内外</span>20<span style="font-family: 仿宋;">个科研单位合作完成,德国波恩大学作物功能基因组学及根系功能生物学团队为第一完成单位。德国波恩大学根系功能生物学实验室</span>PI</span><strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">于鹏</span></strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">博士为第一作者及共同通讯作者。德国波恩大学作物功能基因组实验室</span><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;">Frank Hochholdinger</span></strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">教授,中国农科院</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">作物科学研究</span><span style="font-size: 16px;color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">所<strong>王天宇</strong>研</span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">究员和美国宾夕法尼亚大学</span><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;">Ruairidh Sawers</span></strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">教授为共同通讯作者。中国农科院</span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">作物科学研究所</span><strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">李春辉</span></strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">研究员,美国宾夕法尼亚大学</span><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;">Meng Li</span></strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">博士和德国波恩大学根系功能生物学实验室</span><strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">何晓明</span></strong><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">博士为共同第一作者。</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-size: 16px;"><span style="letter-spacing: 0.35pt;font-family: 仿宋;">另外,德国亥姆霍次</span>Juelich<span style="letter-spacing: 0.35pt;font-family: 仿宋;">研究中心(</span>IBG-2<span style="letter-spacing: 0.35pt;font-family: 仿宋;">)</span>Robert Koller<span style="letter-spacing: 0.35pt;font-family: 仿宋;">教授在根系非损伤可视化技术及放射性碳标记方面提供了重要技术支持,该中心(</span>IBG-3<span style="letter-spacing: 0.35pt;font-family: 仿宋;">)</span>Andrea Schnepf<span style="letter-spacing: 0.35pt;font-family: 仿宋;">教授在根系结构功能模型方面量化根系结构及水分吸收;德国莱布尼茨育种中心</span>Ljudmilla Borisjuk<span style="letter-spacing: 0.35pt;font-family: 仿宋;">教授在种子原位</span>CT<span style="letter-spacing: 0.35pt;font-family: 仿宋;">可视化技术方面参与了该研究;德国慕尼黑工业大学</span>Mutez Ali Ahmed<span style="letter-spacing: 0.35pt;font-family: 仿宋;">教授在根系</span>-<span style="letter-spacing: 0.35pt;font-family: 仿宋;">土壤水分互作模型方面参与了研究。</span><o:p></o:p></span></section><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;"><span style="font-size: 16px;"><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">提高作物抗逆性、保障粮食安全、实现农业可持续发展一直是国际科学界的重大挑战。根系作为植物唯一的地下器官,在水分养分吸收及抗倒伏方面发挥着至关重要的作用。由于根系的不可见性及量化表型的复杂性,使得作物根系研究较叶片和籽粒而言一直相对滞后。禾本科作物玉米作为成功的驯化植物,在保障全球粮食安全方面发挥了重要</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">作用。然而,玉米复杂的根系结构形态以及形成的遗传机理及生态适应性轨迹一直未知。理解作物根系建成的遗传学基础及环境适应性驱动力,对于高效挖掘抗逆并适应未来气候变化的作物资源具有重大理论意义。</span><o:p></o:p></span></span></section><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;"><span style="font-size: 16px;"><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">本研究基于</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">全球</span>9000</span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">余份玉米种质资源(包括玉米野生近缘种大刍草,地方品种和现代自交系),对其进行系统的根系表型鉴定发现多数大刍草没有种子根,而地方品</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">种和现代玉米自交系平均种子根数目在</span>3</span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: "Times New Roman";">-</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;">4<span style="font-family: 仿宋;">之间,结合之前发表的考古学证据,揭示种子根的形成可能符合作物驯化历史及适应性扩散过程</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">。为进一步</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">解析种子根形成与环境因子的关系,利用机器学习方法,发现昼夜温差变化与降雨季节性对种子根数目变化具有最大贡献;值得一提的是,全新世中期(距今</span>6000<span style="font-family: 仿宋;">年前)古气候降水量作为重要的环境因子可以显著解释这一变异,说明玉米根系的水化适应性与一定的进化趋势有关。</span><o:p></o:p></span></span></section><p style="text-align: center;"><img class="rich_pages wxw-img js_img_placeholder wx_img_placeholder" data-galleryid="" data-imgfileid="100116688" data-ratio="0.4898148148148148" data-s="300,640" data-src="https://mmbiz.qpic.cn/sz_mmbiz_png/BI9DBRVfPTS2uuWnaRzS39kkOicJMSRUE1S8Q3GjBblj3h8HrGe7dicDbRmlhZs3iaibmm4c2a7mkl5ibfa8HfA78GQ/640?wx_fmt=png&from=appmsg" data-type="png" data-w="1080" style="width: 677px !important; height: 331.605px !important;" data-original-style="" data-index="3" src="https://upload-images.jianshu.io/upload_images/7698829-2e14096cffaee758.png" _width="677px" crossorigin="anonymous" alt="图片"></p><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);text-align: center;"><span style="font-size: 16px;"><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">图</span>1. <span style="font-family: 仿宋;">玉米种子根数目在驯化及全球适应性过程中的表型变异趋势</span></span></strong><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><o:p></o:p></span></strong></span></section><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);"><span style="font-size: 16px;"><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">进一步利用玉米起源地墨西哥材料进行环境</span>-<span style="font-family: 仿宋;">基因组学关联分析,发现了大量与环境适应性有关的基因组变异位点。结合</span>MAGIC<span style="font-family: 仿宋;">群体,发现种子根数目与纬度变化</span>-<span style="font-family: 仿宋;">水分的适应性及共选择的基因组区段</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">相关</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">。因此,生态和基因组模型表明种子根的变异可能是通过适应新环境的间接选择而形成的。先前群体遗传分析表明,墨西哥西北部玉米的扩张及其随后向美国西南部(亚利桑那州和新墨西哥州)干燥环境的适应。本研究来自于美国西南部玉米种质资源的种子根数目较低。有趣的是,我们仅在美国、加拿大和一些欧洲国家观察到如此低的种子根数目,这与来自美国西南部的</span>Northern Flint<span style="font-family: 仿宋;">(硬粒玉米)的驯化及全球适应性历史密切相关。通过对现代美国及欧洲玉米自交系进行基因组渗入分析发现,</span>Northern Flint<span style="font-family: 仿宋;">种质的渗入比例与种子根数目呈显著负相关,同时利用</span>778 <span style="font-family: 仿宋;">个地理上来源不同的美国地方</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">品种进行基因型鉴定,并</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">发现相同结论。最后,我们还评估了一组携带</span>Northern Flint<span style="font-family: 仿宋;">地方品种 </span>Gaspé Flint <span style="font-family: 仿宋;">基因组区域的基因渗入系。总而言之,</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">携带</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">美国西南部</span>Northern Flint<span style="font-family: 仿宋;">种质的等位基因是决定玉米局部适应不同环境过程中种子根变异的重要因素。</span><o:p></o:p></span></span></section><p style="text-align: center;"><img class="rich_pages wxw-img js_img_placeholder wx_img_placeholder" data-galleryid="" data-imgfileid="100116687" data-ratio="0.5407407407407407" data-s="300,640" data-src="https://mmbiz.qpic.cn/sz_mmbiz_png/BI9DBRVfPTS2uuWnaRzS39kkOicJMSRUEWqxVXEtbQCmw5xCx3BXTeL2eCTCRYHerXRiacZncEcN8hreaPEY7WWg/640?wx_fmt=png&from=appmsg" data-type="png" data-w="1080" style="width: 677px !important; height: 366.081px !important;" data-original-style="" data-index="4" src="https://upload-images.jianshu.io/upload_images/7698829-1473fa267b1a408d.png" _width="677px" crossorigin="anonymous" alt="图片"></p><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);text-align: center;"><span style="font-size: 16px;"><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">图</span>2. <span style="font-family: 仿宋;">玉米种子根数目的地理环境适应性及基因组选择</span></span></strong><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><o:p></o:p></span></strong></span></section><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);"><span style="font-size: 16px;"><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">接下来,我们研究了种子根变异对系统根系结构及形态的影响,基于</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;">218 <span style="font-family: 仿宋;">份代表性玉米地方</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">品</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">种,使用计算机根模型</span>CPlantBox<span style="font-family: 仿宋;">对其进行根系结构和形态特征评估模拟。结果表明,种子根系统变异影响整个幼苗根系结构,与初生根长度和侧根密度呈负相关。我们</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">还</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">发现,种子根的变化通过调节整体根系水导性能</span> Krs <span style="font-family: 仿宋;">来影响幼苗活力。为了研究种子根的变化是否会在土壤条件下重塑根系结构,我们使用磁共振成像和正电子发射断层扫描 </span>(MRI-PET) <span style="font-family: 仿宋;">将玉米无种子根突变体 </span></span><em><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;">rtcs</span></em><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"> <span style="font-family: 仿宋;">与平均产生</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: "Times New Roman";">3</span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">个种子根的野生型材料进行土壤原位比较,发现种子根的变化会影响整个根系的系统维度和数目,这可能会决定植物捕获水分的能力。进一步</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">,我们使用</span> 218 <span style="font-family: 仿宋;">个地方</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">品</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">种的</span> CPlantBox<span style="font-family: 仿宋;">来确定它们的标准吸收分数 </span>(SUF)<span style="font-family: 仿宋;">,并证明侧根对总根吸水量的潜在相对贡献随着种子根的增加而减少。</span><o:p></o:p></span></span></section><p style="text-align: center;"><img class="rich_pages wxw-img js_img_placeholder wx_img_placeholder" data-galleryid="" data-imgfileid="100116691" data-ratio="0.4527777777777778" data-s="300,640" data-src="https://mmbiz.qpic.cn/sz_mmbiz_png/BI9DBRVfPTS2uuWnaRzS39kkOicJMSRUE2SZYCZ24nfAeK4iaWskeVUicQJ6JkAMHqXsOALTJ2A6pxDKfBnuFHDLw/640?wx_fmt=png&from=appmsg" data-type="png" data-w="1080" style="width: 677px !important; height: 306.531px !important;" data-original-style="" data-index="5" src="https://upload-images.jianshu.io/upload_images/7698829-56d10d33c8d72b99.png" _width="677px" crossorigin="anonymous" alt="图片"></p><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);text-align: center;"><span style="font-size: 16px;"><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">图</span>3. <span style="font-family: 仿宋;">玉米</span></span></strong><strong><span style="font-family: "Times New Roman";"><span style="font-family: 仿宋;">根系非损伤可视化技术及放射性碳</span>C</span></strong><strong><span style="font-family: "Times New Roman";vertical-align: super;">11</span></strong><strong><span style="font-family: 仿宋;">标记</span></strong><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><o:p></o:p></span></strong></span></section><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;"><span style="font-size: 16px;"><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">为阐明玉米种子根数目</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">变异的遗传基础,我们使用来自于全球</span>1,604 <span style="font-family: 仿宋;">份</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">玉米</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">自交系进行</span>GWAS<span style="font-family: 仿宋;">分析,</span></span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">挖掘</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">到</span>160 <span style="font-family: 仿宋;">个</span></span></span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">候选基因。利用</span>BonnMu<span style="font-family: 仿宋;">根系突变体库及</span>CRISPR/Cas9<span style="font-family: 仿宋;">敲除株系,最终确定位于第</span>9<span style="font-family: 仿宋;">号染色体上的一个关键候选基因</span></span><em><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;">ZmHb77</span></em><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">。功能验证发现</span><em><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;">ZmHb77</span></em><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">通过控制种子根数目系统调节侧根密度,进而影响根系整体的吸水能力</span><span style="font-size: 16px;"><span style="font-family: 仿宋;">,</span><span style="color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">可提高玉米苗期的抗旱性,并进一步挖掘到该基因控制根系构型及其抗旱性的有利等位变异。最后,通过玉米籽粒胚及其根系中柱基因表达分析,发现该基因调节种子根数目的同时影响侧根发育及其密度,进一步影响玉米的抗</span><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">旱性。</span><o:p></o:p></span></span></section><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);"><span style="font-size: 14px;"><span style="font-size: 14px;font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">该项研究得到了德国</span>DFG-Emmy Noether<span style="font-family: 仿宋;">优秀青年项目、德国可持续农业</span>PhenoRob cluster<span style="font-family: 仿宋;">和 </span>DFG<span style="font-family: 仿宋;">重大群体</span>“<span style="font-family: 仿宋;">根际</span>”<span style="font-family: 仿宋;">项目</span>SPP2089<span style="font-family: 仿宋;">等资助</span></span><span style="font-size: 14px;color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">,</span><span style="font-size: 14px;font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">同时得到中国</span>“<span style="font-family: 仿宋;">十四五</span>”<span style="font-family: 仿宋;">重点研发计划(</span>2021YFD1200700<span style="font-family: 仿宋;">)、国际大科学计划</span>G2P<span style="font-family: 仿宋;">(</span></span><span style="font-size: 14px;letter-spacing: 0.578px;font-family: "Times New Roman";color: rgb(0, 0, 0);">2020YFE0202300</span><span style="font-size: 14px;color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">)和中国农业科学院创新工程等项目资助。</span></span></section><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);"><span style="font-size: 14px;"><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">德国波恩大学于鹏课题组(</span>DFG Emmy Noether Root Functional Biology<span style="font-family: 仿宋;">)</span></span></strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">从事作物根系功能生物学研究,主要方向为(</span>1<span style="font-family: 仿宋;">)植物根系形成的进化及遗传调控机理,(</span>2<span style="font-family: 仿宋;">)作物根系驯化及环境选择的生态适应性过程,(</span>3<span style="font-family: 仿宋;">)根系发育过程与外界环境胁迫应答机制,(</span>4<span style="font-family: 仿宋;">)根系遗传调控与环境微生物互作植物分子遗传学及微生物学研究;以禾本科作物为主要研究对象,基于群体遗传多样性及根系发育突变体,应用植物和微生物多组学联合研究技术,根系组织</span>-<span style="font-family: 仿宋;">单细胞水平如细胞激光捕获技术(</span>laser capture microdissection<span style="font-family: 仿宋;">)及根系</span>/<span style="font-family: 仿宋;">根际非损伤养分分布可视化技术(</span>MRI-PET, NanoSIMS<span style="font-family: 仿宋;">),立足于作物根系遗传,植物营养田间实际问题回答作物根系发育及其与微生物互惠生物学机理,并应用于作物遗传改良及农业生产,目标农业生态系统的高生产力,高抗逆性,最终实现环境及生命系统的健康。</span></span><span style="color: rgb(0, 122, 170);"><strong><span style="font-family: "Times New Roman";letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">该课题组及其主要成员近期会迁往</span>“<span style="font-family: 仿宋;">慕尼黑工业大学</span>”<span style="font-family: 仿宋;">生命科学研究中心建立</span>“<span style="font-family: 仿宋;">植物遗传</span>”<span style="font-family: 仿宋;">课题组,未来课题组依托于国家留学基金委</span>CSC<span style="font-family: 仿宋;">常年招收博士及访问学者,有志于从事农业科学研究,具有科研热情的博士及博士后,</span></span><span style="text-decoration: underline;font-family: "Times New Roman";letter-spacing: 0.35pt;"><span style="font-family: 仿宋;">请联系</span>yupeng@uni-bonn.de</span></strong></span></span><span style="font-size: 16px;"><strong><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"><o:p></o:p></span></strong></span></section><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);margin-bottom: 0px;word-break: break-all !important;"><em><span style="font-size: 14px;color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">来源:</span></em><em><span style="font-size: 14px;color: rgb(51, 51, 51);letter-spacing: 0.35pt;font-family: 仿宋;">Modern农业 MODA</span></em></section><section class="mp_profile_iframe_wrp"><mp-common-profile class="js_uneditable custom_select_card mp_profile_iframe mp_common_widget js_wx_tap_highlight" data-pluginname="mpprofile" data-id="MzI0NzA3MTk2NQ==" data-headimg="http://mmbiz.qpic.cn/sz_mmbiz_png/LQHkjJm6BFtNlZ2KUiaej6e3PvC1fYZ1ByKUb3IsGORNplz2Iic9hWJYzIYMjrxibONsR0mxEibzW6t4vWfj3TePvA/300?wx_fmt=png&wxfrom=19" data-nickname="生物信息与育种" data-alias="xingzhe-2016" data-signature="致力将生信、AI、大数据、云计算等技术应用于现代生物育种" data-from="0" data-is_biz_ban="0" data-origin_num="153" data-isban="0" data-biz_account_status="0" data-index="0"></mp-common-profile></section><p style="text-align: center;"><img class="rich_pages wxw-img js_img_placeholder wx_img_placeholder" data-imgfileid="515454302" data-ratio="0.5392051557465092" data-s="300,640" data-src="https://mmbiz.qpic.cn/sz_mmbiz_png/LQHkjJm6BFvAqR7rLMwlvRFg4x5tVnYpqx8al9bDWWCZk5yWo2GSSoaOJqTDeqj97z0GUBiaPMjIqmWphYmxB2A/640?wx_fmt=png" data-type="png" data-w="931" style="width: 677px !important; height: 365.042px !important;" data-original-style="" data-index="6" src="https://upload-images.jianshu.io/upload_images/7698829-b3de9751692b3c0d.png" _width="677px" crossorigin="anonymous" alt="图片"></p><section style="margin-right: 8px;margin-left: 8px;letter-spacing: 0.578px;white-space: normal;background: rgb(255, 255, 255);"><span style="font-size: 16px;"><span style="font-family: "Times New Roman";color: rgb(51, 51, 51);letter-spacing: 0.35pt;"></span></span></section></section><p style="display: none;"><mp-style-type data-value="3"></mp-style-type></p><blockquote><p>本文使用 <a href="https://www.jianshu.com/p/5709df6fb58d" class="internal">文章同步助手</a> 同步</p></blockquote>

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,088评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,715评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,361评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,099评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 60,987评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,063评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,486评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,175评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,440评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,518评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,305评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,190评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,550评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,880评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,152评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,451评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,637评论 2 335

推荐阅读更多精彩内容