第一个爬虫尝试,爬取小猪短租上海地区10页所有的房屋信息
首先爬取一个房间的基本信息,包括标题、地址、价格、图片、房东基本信息,代码如下:
url = 'http://sh.xiaozhu.com/fangzi/1863532734.html'
wb_data = requests.get(url)
# 开始解析网页数据
soup = BeautifulSoup(wb_data.text, 'lxml')
# 获取标题
titles = soup.select('body > div.wrap.clearfix.con_bg > div.con_l > div.pho_info > h4 > em')
# 获取地址
address = soup.select('body > div.wrap.clearfix.con_bg > div.con_l > div.pho_info > p > span.pr5')
# 获取日租金
dayPrices = soup.select('div.day_l > span')
# 获取图片
imgs = soup.select('#curBigImage')
# 获取房东头像
fdImgs = soup.select('div.js_box.clearfix > div.member_pic > a > img')
# 获取房东性别
sexs = soup.select('#floatRightBox > div.js_box.clearfix > div.member_pic > div')
# 获取房东姓名
names = soup.select('div.js_box.clearfix > div.w_240 > h6 > a')
for title, addres, dayPrice, img, fdImag, sex, name in zip(titles, address, dayPrices, imgs, fdImgs, sexs, names):
data = {
'title': title.get_text(),
'addres': addres.get_text(),
'dayPrice': dayPrice.get_text(),
'img': img.get('src'),
'fdImg': fdImag.get('src'),
'sex': get_lorder_sex(sex.get("class")),
'name': name.get_text()
}
print(data)
然后获取每个页面中所有的房屋链接,代码:
wb_data = requests.get(url)
# 解析网页
soup = BeautifulSoup(wb_data.text, 'lxml')
links = soup.select('#page_list > ul > li > a')
for link in links:
href = link.get('href')
然后生成10个列表页面地址:
urls = ['http://sh.xiaozhu.com/zuipianyi-duanzufang-p{}-10/'.format(number) for number in range(1, 10)]
最后将各个模块写成函数,通过函数调用实现抓取10个页面的所有房屋信息
完整源代码:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2016/8/1 13:21
# @Author : flyme
# @Site :
# @File : xiaozhu.py
# @Software: PyCharm Community Edition
from bs4 import BeautifulSoup
import requests
# 性别不同,标签的class属性内容不同,通过这个差异区分房东性别
def get_lorder_sex(class_name):
if class_name == ['member_ico']:
return '男'
elif class_name == ['member_ico1']:
return '女'
# 获取页面中所有房屋链接
def get_links(url):
wb_data = requests.get(url)
# 解析网页
soup = BeautifulSoup(wb_data.text, 'lxml')
links = soup.select('#page_list > ul > li > a')
for link in links:
href = link.get('href')
get_detail_info(href)
# 获取单个房屋详细信息
def get_detail_info(url):
# url = 'http://sh.xiaozhu.com/fangzi/1863532734.html'
wb_data = requests.get(url)
# 开始解析网页数据
soup = BeautifulSoup(wb_data.text, 'lxml')
# 获取标题
titles = soup.select('body > div.wrap.clearfix.con_bg > div.con_l > div.pho_info > h4 > em')
# 获取地址
address = soup.select('body > div.wrap.clearfix.con_bg > div.con_l > div.pho_info > p > span.pr5')
# 获取日租金
dayPrices = soup.select('div.day_l > span')
# 获取图片
imgs = soup.select('#curBigImage')
# 获取房东头像
fdImgs = soup.select('div.js_box.clearfix > div.member_pic > a > img')
# 获取房东性别
sexs = soup.select('#floatRightBox > div.js_box.clearfix > div.member_pic > div')
# 获取房东姓名
names = soup.select('div.js_box.clearfix > div.w_240 > h6 > a')
for title, addres, dayPrice, img, fdImag, sex, name in zip(titles, address, dayPrices, imgs, fdImgs, sexs, names):
data = {
'title': title.get_text(),
'addres': addres.get_text(),
'dayPrice': dayPrice.get_text(),
'img': img.get('src'),
'fdImg': fdImag.get('src'),
'sex': get_lorder_sex(sex.get("class")),
'name': name.get_text()
}
print(data)
# 生成10个列表页面地址
urls = ['http://sh.xiaozhu.com/zuipianyi-duanzufang-p{}-10/'.format(number) for number in range(1, 10)]
# 从链接列表中,用for一个个取出来
for single_url in urls:
# 把得到的列表页面链接,传给函数,这个函数可以得到详情页链接
get_links(single_url)
爬取结果如下图:
总结:
1、在爬取房东性别时,因为信息实在房东头像右下角,且只是一个图标,所有需要通过判断来确定房东的性别
2、获取所有标签时要主要观察网页中标签位置