(imooc)初识机器学习—理论篇

机器学习

image.png

从数据中寻找规律

image.png

*传统统计学方法:
抽样——描述统计——假设检验
*现代机器学习:
从全量中寻找规律


image.png
image.png

机器学习发展

image.png

业务系统发展

image.png
  • 机器学习:
    离线机器学习:
    缺点:例如电商的某些节日大促销,爆发大量推荐订单等
    解决可以用实时模型实时推荐,即在线学习

机器学习典型应用

关联原则

image.png

聚类

image.png

朴素贝叶斯和决策树

image.png

image.png

ctr预估和协同过滤

image.png
image.png

自然语言处理和图像识别

image.png

image.png
image.png

image.png

机器学习和数据分析的区别

image.png

交易数据


image.png

行为数据


image.png
image.png

机器学习算法分类


算法分类(1)

  • 有监督学习


*无监督学习
eg 聚类算法

*半监督学习

算法分类(2)

根据要解决的问题进行分类

  • 分类与回归
    预测y值,针对具体问题
  • 聚类
  • 标注


    image.png

算法分类(3)(重要)

  • 生成模型
    (像是陪审团)告诉它属于各个类的概率等,结果模棱两可。
  • 判别模型
    直接给一个函数,丢一个数据返回结果告诉你哪一类,直指最终目的(像是大法官告诉你是哪一类)

本质区别在于训练数据的思想不同

image.png

c4.5 cart属于决策树算法,解决分类问题
k—means 聚类,像是电信用户的分类。无监督学习的算法
svm分类算法,基于统计学的算法,有一套完整数学理论支撑,有一定数学门槛(被深度学习光芒盖住)(机器学习面试可能会考)
aprior 关联分析(淘汰),代价高,需要多次访问数据库
同样,PF-growth 解决关联规则问题解决aprior的性能问题。只需要对数据库两边扫描就可以完成数据挖掘,(现在推荐系统有了更多的推荐算法)
PageRank谷歌的算法
Adaboost 常用于人脸识别,本质为决策树,本质解决分类问题(有监督学习)
KNN 有监督学习
朴素贝叶斯 垃圾邮件识别


image.png

逻辑回归:百度谷歌搜索结果的排序
RF,GDBT 同adaboost 决策树算法的改进
推荐算法
LDA 用做文本分析与自然语言处理
WORD2vector 文本挖掘,最终是一个结果,里面用到一系列算法
深度学习:可用于图像识别等等

机器学习解决问题框架

  • 确定目标
    业务需求
    数据
    特征工程(重要)
  • 训练模型
    定义模型


    image.png

定义损失函数
eg。做线性回归模型,没有精确解的时候找一个近似
优化算法
eg 让损失函数更小
求函数极小值的优化上,数学问题

  • 模型评估
    交叉评估:
    效果评估:

图片识别demo演示

image.png

rgb转hsl抽取特征


image.png

把图片转换为向量vector

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容