是谁拿到通往斯德哥尔摩的门票

2019年诺贝尔生理学或医学奖概览

北京时间2019年10月7日17时30分,瑞典卡罗琳医学院宣布,将2019年诺贝尔生理学或医学奖授予美国科学家威廉·凯林(William G. Kaelin)、格雷格·塞门扎(Gregg L. Semenza)以及英国科学家彼得·拉特克利夫(Peter J. Ratcliffe),以表彰他们在“发现细胞如何感知和适应氧气供应”方面所做出的贡献。3位获奖者将共同分享900万瑞典克朗(约合人民币647万元)的奖金。

这个结果的公布,给科学界爆了一个不小的冷门!据瑞典公共广播电台(SR)曾预测,最热门获奖人选为在引发脑部疾病的Mecp2基因突变研究方面获得关键性成果的黎巴嫩裔美国人胡达·佐格比(Huda Zoghbi)。去年准确预测出获奖者的生物学家谢特泽(Jason Sheltzer)则认为,发现关键性DNA——CRISPR-Cas9的两位女科学家、法国人艾曼纽·夏蓬蒂(Emmanuelle Charpentier)和美国人珍妮弗·杜德娜(Jennifer Doudna)最有可能获奖,最终的结果可谓爆了个不大不小的冷门。

威廉·凯林(William G. Kaelin)、格雷格·塞门扎(Gregg L. Semenza)以及英国科学家彼得·拉特克利夫(Peter J. Ratcliffe)分别来自哈佛医学院Dana-Farber癌症研究所、牛津大学和弗朗西斯·克里克研究所(Francis Crick Institute)以及约翰霍普金斯医学院。这三名科学家发现了对人类及大多数动物至关重要的“氧气感知/调节通路”,即细胞如何感知和适应氧气浓度变化;他们发现了分子机制,可以调节基因的活性以应对不同水平的氧气。

一、什么是氧气感知通路?

氧气约占地球大气的五分之一。氧气对动物生命至关重要:几乎所有动物细胞中的线粒体都会利用氧气,将食物转化为有用的能量。众所周知,包括人类在内,绝大多数的动物离不开氧气。但我们对于氧气的需求,却又必须达到一个微妙的平衡。缺乏氧气,我们会窒息而死;氧气过多,我们又会中毒。为此,生物也演化出了诸多精妙的机制,来控制氧气的平衡。譬如对于深埋于组织深处的细胞来说,红细胞能为它们送上氧气。而一旦氧气含量过低,机体就会促进红细胞的生成,保持氧气的浓度在合理的范围内。当这种氧气平衡被打破时,就会导致一系列疾病,通过这种机理研究,可以进一步探讨相关疾病治疗,如脑组织缺血、脑梗、心梗、癌症、中风、感染、心衰等。

在上世纪90年代,Ratcliffe教授和Semenza教授想要理解这一现象背后的机制。他们发现,一段特殊的DNA序列看似和缺氧引起的基因激活有关。如果把这段DNA序列安插在其他基因附近,那么在低氧的环境下,这些基因也能被诱导激活。也就是说,这段DNA序列其实起到了低氧环境下的调控作用。后续研究也表明,一旦这段序列出现突变,生物体就对低氧环境无所适从。

后续研究发现,这段序列在细胞内调控了一种叫做HIF-1的蛋白质,而这种蛋白由HIF-1α与HIF-1β组合而成。在缺氧的环境下,HIF-1能够结合并激活许多哺乳动物细胞内的特定基因。有趣的是,这些基因都不负责生产促红细胞生成素。这些结果表明,缺氧引起的红细胞生成,背后有着更为复杂的原因。而在人们后续阐明的调控通路中,HIF-1扮演了核心的地位,调控了包括VEGF(能促进血管生成)的诸多关键基因。

简单地说,就是三位获奖人“发现了一种调节氧气含量下降时细胞如何适应的分子开关”。这个“开关”就是一种被称为缺氧诱导因子(HIF)的蛋白质。他们发现,在正常的氧气条件下HIF会迅速分解,但当氧气含量下降时,HIF的含量会增加。更为重要的是,HIF还可以控制EPO的表达水平,如果将其DNA片段插入某基因旁,则该基因会被低氧条件诱导表达。

二、这项研究对生理学和病理学的影响

由于上述三位诺贝尔奖得主的开创性工作,我们对不同氧含量如何调节基本生理过程有了更多了解。氧感机制允许细胞在肌肉进行剧烈运动等缺氧水平下更好地进行新陈代谢。氧感控制的适应过程还包括新血管的生成和红细胞的产生。我们身体的免疫系统和许多其他生理功能也被受到氧气感知机制的微调。在胎儿发育过程中,氧感机制对控制正常血管的形成和胎盘的发育至关重要。

目前,美国FDA批准的可用于治疗多发性骨髓瘤及淋巴瘤的硼替佐米,其抗癌活性就与抑制HIF-1的转录有关。

同时该发现也可用于研究治疗心梗或者脑梗等缺血缺氧性疾病,例如通过调节细胞的代谢,使缺氧的细胞渡过低氧期,并尽快恢复血管侧枝循环,从而缓解这些缺血性疾病的病情,加快痊愈的过程。

三、氧气感知通路的发现,在临床上已有运用

据文汇报报道,在三位诺贝尔奖获得者研究基础之上,瑞金医院肾脏专家陈楠教授领衔的全球首个低氧通路新药——罗沙司他的临床研究正在进行中。今年7月,陈楠教授领导的两项关于最新的肾性贫血治疗药物——罗沙司他的研究结果同时在《新英格兰医学杂志》上发表。

据悉,罗沙司他是全球首个低氧诱导因子脯氨酰羟化酶抑制剂(HIF-PHI),目前已作为国家1.1类新药通过中国国家药品监督管理局(NMPA)优先评审批程序,超越美国、日本及欧洲,率先在中国获批上市,用于透析患者肾性贫血治疗。该药的上市对我国及全球肾性贫血患者治疗影响深远。

除此之外,2017年起在西藏日喀则市人民医院进行红细胞单采术治疗高原性红细胞增多症,取得了良好的效果。

四、历年诺贝尔生理学或医学奖的亮点

截至目前,诺贝尔生理学或医学奖共有219人获奖,其中仅有12名为女性,占比不到5.5%。最近一位女性获奖人是中国女药学家屠呦呦,她于2015年因发现治疗疟疾的新疗法获奖。

诺贝尔生理学或医学奖最年轻的获奖人为32岁的加拿大生理学家弗雷德里克·格兰特·班廷,他于1923年因发现胰岛素获奖。最年长的获奖人为87岁的美国生物学家裴顿·劳斯,他于1966年因发现前列腺癌的激素疗法获奖。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容

  • 世界上最硬核的事莫过于走在人类认知的前端;世界上最炫酷的事莫过于自己的成就被所有人认可;北京时间10月7日下午5点...
    臻象阅读 301评论 0 1
  • 二零一七年冬 我觉的什么都留不住 更不敢和姑娘许诺什么 不是怕自己变化 是恐惧时间 一切都是它定的 我只是普通人 ...
    关馨仁阅读 214评论 0 4
  • 青山难过天穹际,万丛树茂,巅高当生众百川!
    山与清川阅读 95评论 0 0
  • 最近一些日子,每天都在计算时间,工作的任务多久能完成?实验大概还需要多久能结束?毕业的文章什么时候能发出去?...
    吴侬彦语阅读 231评论 0 0