elasticsearch 7.0 新特性之 Rank Feature query

Rank Feature为es能在机器学习场景应用提供支持,是es处理特征计算的开始

1、介绍

rank_feature 是es7.0引入的一种特殊的查询query ,这种查询只在rank_feature 和 rank_features字段类型上有效(rank_feature 与rank_features是es7.0新增的数据类型),通常被放到boolean query中的should子句中用来提升文档score,需要注意的是这种查询的性能要高于function score。

通过一个例子进行介绍:

PUT test
{
  "mappings": {
    "properties": {
      "pagerank": {
        "type": "rank_feature"
      },
      "url_length": {
        "type": "rank_feature",
        "positive_score_impact": false
      },
      "topics": {
        "type": "rank_features"
      }
    }
  }
}

PUT test/_doc/1
{
  "url": "http://en.wikipedia.org/wiki/2016_Summer_Olympics",
  "content": "Rio 2016",
  "pagerank": 50.3,
  "url_length": 42,
  "topics": {
    "sports": 50,
    "brazil": 30
  }
}

PUT test/_doc/2
{
  "url": "http://en.wikipedia.org/wiki/2016_Brazilian_Grand_Prix",
  "content": "Formula One motor race held on 13 November 2016 at the Autódromo José Carlos Pace in São Paulo, Brazil",
  "pagerank": 50.3,
  "url_length": 47,
  "topics": {
    "sports": 35,
    "formula one": 65,
    "brazil": 20
  }
}

PUT test/_doc/3
{
  "url": "http://en.wikipedia.org/wiki/Deadpool_(film)",
  "content": "Deadpool is a 2016 American superhero film",
  "pagerank": 50.3,
  "url_length": 37,
  "topics": {
    "movies": 60,
    "super hero": 65
  }
}

POST test/_refresh

GET test/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "content": "2016"
          }
        }
      ],
      "should": [
        {
          "rank_feature": {
            "field": "pagerank"
          }
        },
        {
          "rank_feature": {
            "field": "url_length",
            "boost": 0.1
          }
        },
        {
          "rank_feature": {
            "field": "topics.sports",
            "boost": 0.4
          }
        }
      ]
    }
  }
}

2、操作

rank_feature query 支持3中影响打分的函数,分别是saturation(默认)、Logarithm、Sigmoid。

  • saturation
    score区间(0,1),该函数的打分公式是 S / (S + pivot) ,其中S是rank feature 或 rank features的value值,pivod是score分界值,当S值大于pivot时,score>0.5 ;当S值小于pivot时,score<0.5 。
GET test/_search
{
  "query": {
    "rank_feature": {
      "field": "pagerank",
      "saturation": {
        "pivot": 8
      }
    }
  }
}

如果不指定pivot,elasticsearch会计算该field下索引值,近似求解出一个平均值作为pivot值;如果不知道如何设置pivot,官方建议不设置。

GET test/_search
{
  "query": {
    "rank_feature": {
      "field": "pagerank",
      "saturation": {}
    }
  }
}
  • Logarithm
    score无边界,该函数打分公式是 log(scaling_factor + S) ,其中S是rank feature 或 rank features的value值,scaling_factor 是配置的缩放系数。
GET test/_search
{
  "query": {
    "rank_feature": {
      "field": "pagerank",
      "log": {
        "scaling_factor": 4
      }
    }
  }
}

需要注意的是该函数下的rank feature 或 rank features的value值必须是正数。

  • Sigmoid
    score区间(0,1),该函数是 saturation 函数的扩展,计算公式是 Sexp / (Sexp + pivotexp) ,其中新增了一个指数参数 exponent,该参数必须是整数,建议取值区间[0.5,1] ,如果开始不知道如何设置一个比较理想的exponent值时,官方建议先从saturation函数开始。
GET test/_search
{
  "query": {
    "rank_feature": {
      "field": "pagerank",
      "sigmoid": {
        "pivot": 7,
        "exponent": 0.6
      }
    }
  }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342