C++11的多线程编程方式
std::thread
在c++11的标准里,线程已经由标准库提供:std::thread,它起源于POSIX thread,因此在使用std::thread来做线程编程时,编译需要带上-lpthread。
#include <iostream>
#include <utility>
#include <thread>
#include <chrono>
#include <functional>
#include <atomic>
void f1(int n)
{
for (int i = 0; i < 5; ++i) {
std::cout << "Thread 1 executing\n";
++n;
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
void f2(int& n)
{
for (int i = 0; i < 5; ++i) {
std::cout << "Thread 2 executing\n";
++n;
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
int main()
{
int n = 0;
std::thread t1; // t1 is not a thread
std::thread t2(f1, n + 1); // pass by value
std::thread t3(f2, std::ref(n)); // pass by reference
std::thread t4(std::move(t3)); // t4 is now running f2(). t3 is no longer a thread
t2.join();
t4.join();
std::cout << "Final value of n is " << n << '\n';
}
future和promise
除了std::thread这种原始的多线程编程方式,c++11还提供了future,promise这种语义的多线程编程方式,future以及promise能很好地处理需要线程之间传递数据以及同步的情况。
// promise example
#include <iostream> // std::cout
#include <functional> // std::ref
#include <thread> // std::thread
#include <future> // std::promise, std::future
void print_int (std::future<int>& fut) {
int x = fut.get();
std::cout << "value: " << x << '\n';
}
int main ()
{
std::promise<int> prom; // create promise
std::future<int> fut = prom.get_future(); // engagement with future
std::thread th1 (print_int, std::ref(fut)); // send future to new thread
prom.set_value (10); // fulfill promise
// (synchronizes with getting the future)
th1.join();
return 0;
}
packaged_task
packaged_task是用于将future和promise连接起来的模板类,旨在减少使用future和promise语义编写多线程程序时的代码的冗余。
// packaged_task example
#include <iostream> // std::cout
#include <future> // std::packaged_task, std::future
#include <chrono> // std::chrono::seconds
#include <thread> // std::thread, std::this_thread::sleep_for
// count down taking a second for each value:
int countdown (int from, int to) {
for (int i=from; i!=to; --i) {
std::cout << i << '\n';
std::this_thread::sleep_for(std::chrono::seconds(1));
}
std::cout << "Lift off!\n";
return from-to;
}
int main ()
{
std::packaged_task<int(int,int)> tsk (countdown); // set up packaged_task
std::future<int> ret = tsk.get_future(); // get future
std::thread th (std::move(tsk),10,0); // spawn thread to count down from 10 to 0
// ...
int value = ret.get(); // wait for the task to finish and get result
std::cout << "The countdown lasted for " << value << " seconds.\n";
th.join();
return 0;
}
async
async提供了最简单的并发编程方式,使用async进行并行编程无需考虑线程和锁,在调用async时,该任务应该不包含有需要锁保护的共享数据,而async会根据当前cpu的core的使用情况来决定创建多少个thread来运行该任务。
#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <future>
template <typename RAIter>
int parallel_sum(RAIter beg, RAIter end)
{
auto len = end - beg;
if(len < 1000)
return std::accumulate(beg, end, 0);
RAIter mid = beg + len/2;
auto handle = std::async(std::launch::async,
parallel_sum<RAIter>, mid, end);
int sum = parallel_sum(beg, mid);
return sum + handle.get();
}
int main()
{
std::vector<int> v(10000, 1);
std::cout << "The sum is " << parallel_sum(v.begin(), v.end()) << '\n';
}
c++11控制并发逻辑的方式
future和promise
这种方式主要是通过这种语义实现程序上的多线程的并发逻辑的控制,具体参考上面的程序。
锁与条件变量
锁是一个经典的概念,经常被用于控制多线程访问共享数据的逻辑,条件变量更是提供了同步多个线程的语义。条件变量的必须和锁——跟更确地是std::unique_lock<std::mutex>——配合使用,
这种配合使用的限制可以使得条件变量在一些平台上的效率得到最大的优化。
#include <iostream>
#include <string>
#include <thread>
#include <mutex>
#include <condition_variable>
std::mutex m;
std::condition_variable cv;
std::string data;
bool ready = false;
bool processed = false;
void worker_thread()
{
// Wait until main() sends data
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, []{return ready;});
// after the wait, we own the lock.
std::cout << "Worker thread is processing data\n";
data += " after processing";
// Send data back to main()
processed = true;
std::cout << "Worker thread signals data processing completed\n";
// Manual unlocking is done before notifying, to avoid waking up
// the waiting thread only to block again (see notify_one for details)
lk.unlock();
cv.notify_one();
}
int main()
{
std::thread worker(worker_thread);
data = "Example data";
// send data to the worker thread
{
std::lock_guard<std::mutex> lk(m);
ready = true;
std::cout << "main() signals data ready for processing\n";
}
cv.notify_one();
// wait for the worker
{
std::unique_lock<std::mutex> lk(m);
cv.wait(lk, []{return processed;});
}
std::cout << "Back in main(), data = " << data << '\n';
worker.join();
}
std::lock_guard和std::unique_lock类似,但是前者在构造的时候就会加锁,后者可以不用在构造时就立即加锁(默认构造不需要锁),加锁可以发生在其生命期间的任何时刻,另外后者也可以转移其所有权到别的变量。
条件变量的notify方法能用于线程的唤醒,当有notify发生时,其他处于waiting状态的线程会尝试获取锁,成功后判断需要唤醒的条件(通过wait的第二个参数给出)是否为真,如果是真就唤醒,否则释放锁继续waiting。
一个充分使用了c++11特性的线程池
#ifndef THREAD_POOL_H
#define THREAD_POOL_H
#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>
class ThreadPool {
public:
ThreadPool(size_t);
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector< std::thread > workers;
// the task queue
std::queue< std::function<void()> > tasks;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
: stop(false)
{
for(size_t i = 0;i<threads;++i)
workers.emplace_back(
[this]
{
for(;;)
{
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(lock,
[this]{ return this->stop || !this->tasks.empty(); });
if(this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
task();
}
}
);
}
// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>
{
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared< std::packaged_task<return_type()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
// don't allow enqueueing after stopping the pool
if(stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
tasks.emplace([task](){ (*task)(); });
}
condition.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for(std::thread &worker: workers)
worker.join();
}
#endif
该线程池主要是维护了一个任务的队列,初始化好的线程不断从该队列中取出任务并执行,同时维护好队列。
一些陷阱
std::vector<std::future<std::pair<std::string, std::string> > > results;
results.emplace_back(thread_pool->enqueue([](){return std::make_pair();}));
for (auto && res: results) {
auto & ret = res.get();
auto t = std::thread(somefunc, std::ref(ret.first), std::ref(ret.second));
t.detach();
}
这里的问题在于ret.first, ret.second会在不同线程里使用同一个对象的引用,其值在不同线程里都一样,这明显有悖初衷。修改的方法简单直接:使用值传递,而不是使用引用。