Java I/O五.基础总结

本文对Java I/O基础知识复习的一个总结。

一、概览

Java 的 I/O 大概可以分成以下几类:

磁盘操作:File
字节操作:InputStream 和 OutputStream
字符操作:Reader 和 Writer
对象操作:Serializable
网络操作:Socket
新的输入/输出:NIO

二、磁盘操作

File 类可以用于表示文件和目录,但是它只用于表示文件的信息,而不表示文件的内容。

递归地输出一个目录下所有文件:

public static void listAllFiles(File dir) {
    if (dir == null || !dir.exists()) {//base case
        return;
    }
    if (dir.isFile()) {//to do
        System.out.println(dir.getName());
        return;
    }
    for (File file : dir.listFiles()) {//reverse
        listAllFiles(file);
    }
}

三、字节操作(理解装饰者)

image

Java I/O 使用了装饰者模式来实现。

  • InputStream抽象组件
  • FileInputStream 是 InputStream 的子类,属于具体组件,提供了字节流的输入操作
  • FilterInputStream 属于抽象装饰者,装饰者用于装饰组件,为组件提供额外的功能,例如 BufferedInputStream 为 FileInputStream 提供缓存的功能。

装饰

实例化一个具有缓存功能的字节流对象时,只需要在 FileInputStream 对象上再套一层 BufferedInputStream 对象即可。

BufferedInputStream bis = new BufferedInputStream(new FileInputStream(file));

DataInputStream 装饰者提供了对更多数据类型进行输入的操作,比如 int、double 等基本类型。

批量读入文件内容到字节数组

byte[] buf = new byte[20*1024];
int bytes = 0;
// 最多读取 buf.length 个字节,返回的是实际读取的个数,返回 -1 的时候表示读到 eof,即文件尾
while((bytes = in.read(buf, 0 , buf.length)) != -1) {
    // ...
}

四、字符操作(理解编码)

不管是磁盘还是网络传输,最小的存储单元都是字节,而不是字符,所以 I/O 操作的都是字节而不是字符。
但是在程序中操作的通常是字符形式的数据,因此需要提供对字符进行操作的方法。

编码解码

定义

编码就是把字符转换为字节,而解码是把字节重新组合成字符。
如果编码和解码过程使用不同的编码方式那么就出现了乱码。

编码方式

编码方式 说明
GBK 中文字符占 2 个字节,英文字符占 1 个字节;
UTF-8 中文字符占 3 个字节,英文字符占 1 个字节;
UTF-16be 中文字符和英文字符都占 2 个字节。

UTF-16be 中的 be 指的是 Big Endian,也就是大端。相应地也有 UTF-16le,le 指的是 Little Endian,也就是小端。

Java char 使用双字节编码 UTF-16be

这不是指 Java 只支持这一种编码方式,而是说 char 这种类型使用 UTF-16be 进行编码。char 类型占 16 位,也就是两个字节,Java 使用这种双字节编码是为了让一个中文或者一个英文都能使用一个 char 来存储。

例子

String 可以看成一个字符序列,可以指定一个编码方式将它编码为字节序列,也可以指定一个编码方式将一个字节序列解码为 String。

String str1 = "中文";
byte[] bytes = str1.getBytes("UTF-8");
String str2 = new String(bytes, "UTF-8");
System.out.println(str2);

实际应用

InputStreamReader 实现从文本文件的字节流解码成字符流;OutputStreamWriter 实现字符流编码成为文本文件的字节流。它们继承自 Reader 和 Writer。

五、对象操作(理解序列化)

定义

序列化就是将一个对象转换成字节序列,方便存储和传输。

序列化:ObjectOutputStream.writeObject()

反序列化:ObjectInputStream.readObject()

序列化的类需要实现 Serializable 接口,它只是一个标准,没有任何方法需要实现。

transient

transient 关键字可以使一些属性不会被序列化。

ArrayList 序列化和反序列化的实现 :ArrayList 中存储数据的数组是用 transient 修饰的,因为这个数组是动态扩展的,并不是所有的空间都被使用,因此就不需要所有的内容都被序列化。通过重写序列化和反序列化方法,使得可以只序列化数组中有内容的那部分数据。

private transient Object[] elementData;

六、网络操作

Java 中的网络支持:

  1. InetAddress:用于表示网络上的硬件资源,即 IP 地址;
  2. URL:统一资源定位符,通过 URL 可以直接读取或者写入网络上的数据;
  3. Sockets:使用 TCP 协议实现网络通信;
  4. Datagram:使用 UDP 协议实现网络通信。

InetAddress

没有公有构造函数,只能通过静态方法来创建实例。

InetAddress.getByName(String host);
InetAddress.getByAddress(byte[] addr);

URL

可以直接从 URL 中读取字节流数据

URL url = new URL("http://www.baidu.com");
InputStream is = url.openStream();                           // 字节流
InputStreamReader isr = new InputStreamReader(is, "utf-8");  // 字符流
BufferedReader br = new BufferedReader(isr);
String line = br.readLine();
while (line != null) {
    System.out.println(line);
    line = br.readLine();
}
br.close();
isr.close();
is.close();

Sockets

  • ServerSocket:服务器端类
  • Socket:客户端类
  • 服务器和客户端通过 InputStream 和 OutputStream 进行输入输出。
image

Datagram

  • DatagramPacket:数据包类
  • DatagramSocket:通信类

七、NIO

新的输入/输出 (NIO) 库是在 JDK 1.4 中引入的。NIO 弥补了原来的 I/O 的不足,它在标准 Java 代码中提供了高速的、面向块的 I/O。

流与块

I/O 与 NIO 最重要的区别是数据打包和传输的方式

  • I/O 以流的方式处理数据
  • NIO 以块的方式处理数据。

面向流的 I/O 一次处理一个字节数据,一个输入流产生一个字节数据,一个输出流消费一个字节数据。为流式数据创建过滤器非常容易,链接几个过滤器,以便每个过滤器只负责单个复杂处理机制的一部分,这样也是相对简单的。不利的一面是,面向流的 I/O 通常相当慢。

一个面向块的 I/O 系统以块的形式处理数据,一次处理数据块。按块处理数据比按流处理数据要快得多。但是面向块的 I/O 缺少一些面向流的 I/O 所具有的优雅性和简单性。

I/O 包和 NIO 已经很好地集成了,java.io.* 已经以 NIO 为基础重新实现了,所以现在它可以利用 NIO 的一些特性。例如,java.io.* 包中的一些类包含以块的形式读写数据的方法,这使得即使在面向流的系统中,处理速度也会更快。

通道与缓冲区

1. 通道

通道 Channel 是对原 I/O 包中的流的模拟,可以通过它读取和写入数据。

通道与流的不同之处在于,流只能在一个方向上移动,(一个流必须是 InputStream 或者 OutputStream 的子类),而通道是双向的,可以用于读、写或者同时用于读写。

通道包括以下类型:

  • FileChannel:从文件中读写数据;
  • DatagramChannel:通过 UDP 读写网络中数据;
  • SocketChannel:通过 TCP 读写网络中数据;
  • ServerSocketChannel:可以监听新进来的 TCP 连接,对每一个新进来的连接都会创建一个 SocketChannel。

2. 缓冲区

发送给一个通道的所有对象都必须首先放到缓冲区中,同样地,从通道中读取的任何数据都要读到缓冲区中。也就是说,不会直接对通道进行读写数据,而是要先经过缓冲区。

缓冲区实质上是一个数组,但它不仅仅是一个数组。缓冲区提供了对数据的结构化访问,而且还可以跟踪系统的读/写进程。

缓冲区包括以下类型:

  • ByteBuffer
  • CharBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
  • DoubleBuffer

缓冲区状态变量

状态变量 作用
capacity 最大容量
position 当前已经读写的字节数
limit 还可以读写的字节数

状态变量的改变过程举例:

① 新建一个大小为 8 个字节的缓冲区,此时 position 为 0,而 limit = capacity = 9。capacity 变量不会改变,下面的讨论会忽略它。

image

② 从输入通道中读取 3 个字节数据写入缓冲区中,此时 position 移动设为 3,limit 保持不变。

image

③ 以下图例为已经从输入通道读取了 5 个字节数据写入缓冲区中。在将缓冲区的数据写到输出通道之前,需要先调用 flip() 方法,这个方法将 limit 设置为当前 position,并将 position 设置为 0。

image

④ 从缓冲区中取 4 个字节到输出缓冲中,此时 position 设为 4。

image

⑤ 最后需要调用 clear() 方法来清空缓冲区,此时 position 和 limit 都被设置为最初位置。

image

文件 NIO 实例

以下展示了使用 NIO 快速复制文件的实例:

public static void fastCopy(String src, String dist) throws IOException {
    FileInputStream fin = new FileInputStream(src); //获得源文件的输入字节流
    FileChannel fcin = fin.getChannel();//获取输入字节流的文件通道

    FileOutputStream fout = new FileOutputStream(dist);//获取目标文件的输出字节流 
    FileChannel fcout = fout.getChannel();//获取输出字节流的通道

   //获取输入字节流的文件通道为缓冲区分配 1024 个字节 
    ByteBuffer buffer = ByteBuffer.allocateDirect(1024);

    while (true) {     
        int r = fcin.read(buffer); //从输入通道中读取数据到缓冲区中
        if (r == -1) {// read() 返回 -1 表示 EOF
            break;
        }
        buffer.flip();//切换读写
        fcout.write(buffer);//把缓冲区的内容写入输出文件中 
        buffer.clear();//清空缓冲区
    }
}

内存映射文件

内存映射文件 I/O 是一种读和写文件数据的方法,它可以比常规的基于流或者基于通道的 I/O 快得多。

只有文件中实际读取或者写入的部分才会映射到内存中。

现代操作系统一般会根据需要将文件的部分映射为内存的部分,从而实现文件系统。Java 内存映射机制只不过是在底层操作系统中可以采用这种机制时,提供了对该机制的访问。

向内存映射文件写入可能是危险的,仅只是改变数组的单个元素这样的简单操作,就可能会直接修改磁盘上的文件。修改数据与将数据保存到磁盘是没有分开的。

下面代码行将文件的前 1024 个字节映射到内存中,map() 方法返回一个 MappedByteBuffer,它是 ByteBuffer 的子类。因此,您可以像使用其他任何 ByteBuffer 一样使用新映射的缓冲区,操作系统会在需要时负责执行映射。

MappedByteBuffer mbb = fc.map(FileChannel.MapMode.READ_WRITE, 0, 1024);

对比

NIO 与普通 I/O 的区别主要有以下两点:

  • NIO 是非阻塞的。应当注意,FileChannel 不能切换到非阻塞模式,套接字 Channel 可以。
  • NIO 面向块,I/O 面向流。

参考文章
Java I/O
Java I/O

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,902评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,037评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,978评论 0 332
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,867评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,763评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,104评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,565评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,236评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,379评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,313评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,363评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,034评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,637评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,719评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,952评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,371评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,948评论 2 341

推荐阅读更多精彩内容