clc
clear
close all
%%
%读取视频
mov = VideoReader('test.avi');
N=mov.NumFrames; %读取视频长度
%%
% 帧设置
frame = read(mov,1); % 读取第一帧作为背景
frame_bw = rgb2gray(frame); % 将背景转换为灰度图像
frame_size = size(frame); %取帧大小
width = frame_size(2);
height = frame_size(1);
frame_g = zeros(height, width); %前景
backdrop_bw = zeros(height, width); %背景
%%
%视频变量
C = 3; % 组成混合高斯的单高斯数目 (一般3-5)
M = 3; %
D = 2.5; % 阈值(一般2.5个标准差)
alpha = 0.01; % learning rate 学习率决定更新速度(between 0 and 1) (from paper 0.01)
thresh = 0.25; % foreground threshold 前景阈值(0.25 or 0.75 in paper)
sd_init = 6; % initial standard deviation 初始化标准差(for new components) var = 36 in paper
w = zeros(height,width,C); % initialize weights array 初始化权值数组
mean = zeros(height,width,C); % pixel means 像素均值
sd = zeros(height,width,C); % pixel standard deviations 像素标准差
u_diff = zeros(height,width,C); % difference of each pixel from mean 与均值的差
p = alpha/(1/C); % initial p variable 参数学习率(used to update mean and sd)
rank = zeros(1,C); % rank of components (w/sd)
%%
%初始化均值和权值
pixel_depth = 8; % 8-bit resolution 像素深度为8位
pixel_range = 2^pixel_depth -1; % pixel range 像素范围2的7次方0—255(# of possible values)
for i=1:height
for j=1:width
for k=1:C
mean(i,j,k) = rand*pixel_range; % means random (0-255之间的随机数)
w(i,j,k) = 1/C; % weights uniformly dist
sd(i,j,k) = sd_init; % initialize to sd_init
end
end
end
%%
%处理帧
for n = 1:N
frame = read(mov,n); % 读%第n帧
frame_bw = rgb2gray(frame); %转换为灰度图像
frame_bw=medfilt2(frame_bw);
% 计算像素差值
for m=1:C
u_diff(:,:,m) = abs(double(frame_bw) - double(mean(:,:,m)));
end
%更新每个像素的背景模型
for i=1:height
for j=1:width
match = 0;
for k=1:C
if (abs(u_diff(i,j,k)) <= D*sd(i,j,k)) %像素匹配了模型
match = 1; % 设置匹配记号
%更新权值,均值,标准差和参数学习率
w(i,j,k) = (1-alpha)*w(i,j,k) + alpha;
p = alpha/w(i,j,k);
mean(i,j,k) = (1-p)*mean(i,j,k) + p*double(frame_bw(i,j));
sd(i,j,k) = sqrt((1-p)*(sd(i,j,k)^2) + p*((double(frame_bw(i,j)) - mean(i,j,k)))^2);
else
w(i,j,k) = (1-alpha)*w(i,j,k); % weight slighly decreases 权值减小
end
end
backdrop_bw(i,j)=0;
for k=1:C
backdrop_bw(i,j) = backdrop_bw(i,j)+ mean(i,j,k)*w(i,j,k); %更新背景
end
% 如果没有匹配的模型则创建新模型
if (match == 0)
[min_w, min_w_index] = min(w(i,j,:));
mean(i,j,min_w_index) = double(frame_bw(i,j));
sd(i,j,min_w_index) = sd_init;
end
rank = w(i,j,:)./sd(i,j,:); % 计算优先级
rank_ind = [1:1:C];
% 计算前景
frame_g(i,j) = 0;
while ((match == 0)&&(k<=M))
if (abs(u_diff(i,j,rank_ind(k))) <= D*sd(i,j,rank_ind(k)))
frame_g(i,j) = 0; %black = 0
else
frame_g(i,j) = frame_bw(i,j);
end
k = k+1;
end
end
end
figure(1),subplot(1,2,1),imshow(frame) %显示输入图像
% subplot(1,3,2),imshow(uint8(backdrop_bw)) %显示背景图像
subplot(1,2,2),imshow(uint8(frame_g)) %显示前景图像
end
背景差分法+混合高斯模型【matlab】
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 陶涛 学号:19131213373 【嵌牛导读】使用python编程运动分析,对运动物体进行标记 【嵌牛鼻子】Ma...
- 本文搬运自本人 CSDN 博客:《背景提取算法——帧间差分法、背景差分法、ViBe算法、ViBe+算法》 注:本...
- 一、正态分布 在了解高斯混合模型之前,我们先来看看什么是高斯分布,高斯分布大家应该都比较熟悉了,就是我们平时所说的...