iOS底层之objc_msgSend消息快速查找

前言

在上一篇文章iOS底层之cache_t探索中,我们了解了方法写入cache中的流程,接下来我们了解些方法从cache中读的流程。

了解Runtime

runtime称为运行时,它区别于编译时

  • 运行时代码跑起来,被装载到内存中的过程,如果此时出错,则程序会崩溃,是一个动态阶段
  • 编译时源代码翻译成机器能识别的代码的过程,主要是对语言进行最基本的检查报错,即词法分析、语法分析等,是一个静态的阶段

runtime 交互有三种方式

  • Objective-C Code直接调用 例:[obj run]
  • Framework&Service 例:NSSelectorFromStringisKindeofClassisMemberOfClass
  • RuntimeAPI 例:class_getInstanceSize

runtime与底层的关系

Runtime三种方式及底层的关系
其中的compiler就是我们了解的编译器,即LLVM,例如OC的alloc对应底层的objc_allocruntime system library 就是底层库。

探索方法的本质

方法的底层实现

iOS底层之类的重要组成部分-isa结构体分析这篇文章中,我们了解到可以通过clang命令将main.m文件编译成main.cpp文件来看底层源码实现。接下来我们我可以得到如下代码

//main.m中方法的调用
WJPerson *person = [WJPerson alloc];
[person sayHello];
[person sayThanksYou];

//👇clang编译后的底层实现
WJPerson *person = ((WJPerson *(*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("WJPerson"), sel_registerName("alloc"));
((void (*)(id, SEL))(void *)objc_msgSend)((id)person, sel_registerName("sayHello"));
((void (*)(id, SEL))(void *)objc_msgSend)((id)person, sel_registerName("sayThanksYou"));

通过上述代码可以看出,方法的本质就是objc_msgSend消息发送
接下来我们验证一下通过objc_msgSend方法来完成[person sayHello]的调用,查看其打印是否是一致。main.m中的代码如下

WJPerson *person = [WJPerson alloc];
[person sayHello];
[person sayThanksYou];
objc_msgSend(person,sel_registerName("sayHello"));


1、直接调用objc_msgSend,需要导入头文件#import <objc/message.h>#import <objc/runtime.h>
2、需要将target --> Build Setting -->搜索msg -- 将enable strict checking of obc_msgSend callsYES改为NO,将严厉的检查机制关掉,否则objc_msgSend的参数会报错

打印结果如下
objc_msgSend方法调用打印结果
父类与子类的方法之间的关联

为了方便验证,我们再创建一个WJTeacher类,继承与WJPerson,在父类WJPerson声明并实现一个方法,在子类WJTeacher只声明不实现这个方法

@interface WJPerson : NSObject

- (void)personDesc;

@end

@implementation WJPerson

- (void)personDesc{
    NSLog(@"I am person");
}

@end

@interface WJTeacher : WJPerson

- (void)personDesc;

@end

@implementation WJTeacher

@end

然后在main.m中使用oc代码runtime底层api objc_msgSendSuper分别调用一下这个方法

int main(int argc, const char * argv[]) {
    @autoreleasepool {
        
        WJPerson *person = [WJPerson alloc];
        WJTeacher *teacher = [WJTeacher alloc];
        [teacher personDesc];
        
        struct objc_super wjsuper;
        wjsuper.receiver = teacher; //消息的接收者是teacher
        wjsuper.super_class = [WJPerson class]; //告诉父类是谁
            
        //消息的接受者还是自己 - 父类 - 请你直接找我的父亲
        objc_msgSendSuper(&wjsuper, sel_registerName("personDesc"));
    }
    return 0;
}

最后结果如下图所示

子类方法调用转为执行父类的实现的打印结果

由结果发现不论是[person sayHello]还是objc_msgSendSuper都执行的是父类中sayHello的实现,所以这里,我们可以作一个猜测:方法调用,首先是在类中查找,如果类中没有找到,会到类的父类中查找
为了验证我们的发现,我们分析一下底层源码实现

objc_msgSend 快速查找流程分析

objc4-781源码中,搜索objc_msgSend,由于我们日常开发的都是架构是arm64,所以需要在arm64.s后缀的文件中查找objc_msgSend源码实现,搜索发现objc_msgSend方法的汇编起始位置为ENTRY _objc_msgSend

//---- 消息发送 -- 汇编入口--objc_msgSend主要是拿到接收者的isa信息
ENTRY _objc_msgSend 
//---- 无窗口
    UNWIND _objc_msgSend, NoFrame 
    
//---- p0 和空对比,即判断接收者是否存在,其中p0是objc_msgSend的第一个参数-消息接收者receiver
    cmp p0, #0          // nil check and tagged pointer check 
//---- le小于 --支持taggedpointer(小对象类型)的流程
#if SUPPORT_TAGGED_POINTERS
    b.le    LNilOrTagged        //  (MSB tagged pointer looks negative) 
#else
//---- p0 等于 0 时,直接返回 空
    b.eq    LReturnZero 
#endif 
//---- p0即receiver 肯定存在的流程
//---- 根据对象拿出isa ,即从x0寄存器指向的地址 取出 isa,存入 p13寄存器
    ldr p13, [x0]       // p13 = isa 
//---- 在64位架构下通过 p16 = isa(p13) & ISA_MASK,拿出shiftcls信息,得到class信息
    GetClassFromIsa_p16 p13     // p16 = class 
LGetIsaDone:
    // calls imp or objc_msgSend_uncached 
//---- 如果有isa,走到CacheLookup 即缓存查找流程,也就是所谓的sel-imp快速查找流程
    CacheLookup NORMAL, _objc_msgSend

#if SUPPORT_TAGGED_POINTERS
LNilOrTagged:
//---- 等于空,返回空
    b.eq    LReturnZero     // nil check 

    // tagged
    adrp    x10, _objc_debug_taggedpointer_classes@PAGE
    add x10, x10, _objc_debug_taggedpointer_classes@PAGEOFF
    ubfx    x11, x0, #60, #4
    ldr x16, [x10, x11, LSL #3]
    adrp    x10, _OBJC_CLASS_$___NSUnrecognizedTaggedPointer@PAGE
    add x10, x10, _OBJC_CLASS_$___NSUnrecognizedTaggedPointer@PAGEOFF
    cmp x10, x16
    b.ne    LGetIsaDone

    // ext tagged
    adrp    x10, _objc_debug_taggedpointer_ext_classes@PAGE
    add x10, x10, _objc_debug_taggedpointer_ext_classes@PAGEOFF
    ubfx    x11, x0, #52, #8
    ldr x16, [x10, x11, LSL #3]
    b   LGetIsaDone
// SUPPORT_TAGGED_POINTERS
#endif

LReturnZero:
    // x0 is already zero
    mov x1, #0
    movi    d0, #0
    movi    d1, #0
    movi    d2, #0
    movi    d3, #0
    ret

    END_ENTRY _objc_msgSend

通过分析上述代码我们可以总结一下:
【第一步】cmp p0, #0:先判断接收者是否存在,如果不存在直接返回b.eq LReturnZero
【第二步】ldr p13, [x0]:如果接收者存在,则取出对象的isa指针,然后通过GetClassFromIsa_p16 p13方法取出isa中的shiftcls位域信息,即class

接下来我们看下 GetClassFromIsa_p16的源码实现

.macro GetClassFromIsa_p16 /* src */
//---- 此处用于watchOS
#if SUPPORT_INDEXED_ISA 
    // Indexed isa
//---- 将isa的值存入p16寄存器
    mov p16, $0         // optimistically set dst = src 
    tbz p16, #ISA_INDEX_IS_NPI_BIT, 1f  // done if not non-pointer isa -- 判断是否是 nonapointer isa
    // isa in p16 is indexed
//---- 将_objc_indexed_classes所在的页的基址 读入x10寄存器
    adrp    x10, _objc_indexed_classes@PAGE 
//---- x10 = x10 + _objc_indexed_classes(page中的偏移量) --x10基址 根据 偏移量 进行 内存偏移
    add x10, x10, _objc_indexed_classes@PAGEOFF
//---- 从p16的第ISA_INDEX_SHIFT位开始,提取 ISA_INDEX_BITS 位 到 p16寄存器,剩余的高位用0补充
    ubfx    p16, p16, #ISA_INDEX_SHIFT, #ISA_INDEX_BITS  // extract index 
    ldr p16, [x10, p16, UXTP #PTRSHIFT] // load class from array
1:

//--用于64位系统
#elif __LP64__ 
    // 64-bit packed isa
//---- p16 = class = isa & ISA_MASK(位运算 & 即获取isa中的shiftcls信息)
    and p16, $0, #ISA_MASK 

#else
    // 32-bit raw isa ---- 用于32位系统
    mov p16, $0

#endif

.endmacro

从上述代码中可以看到在arm64架构下通过isa & ISA_MASK获取shiftcls位域的类信息。
【第三步】获取到isa会进入到CacheLookup缓存查找流程

//!!!!!!!!!重点!!!!!!!!!!!!
.macro CacheLookup 
    //
    // Restart protocol:
    //
    //   As soon as we're past the LLookupStart$1 label we may have loaded
    //   an invalid cache pointer or mask.
    //
    //   When task_restartable_ranges_synchronize() is called,
    //   (or when a signal hits us) before we're past LLookupEnd$1,
    //   then our PC will be reset to LLookupRecover$1 which forcefully
    //   jumps to the cache-miss codepath which have the following
    //   requirements:
    //
    //   GETIMP:
    //     The cache-miss is just returning NULL (setting x0 to 0)
    //
    //   NORMAL and LOOKUP:
    //   - x0 contains the receiver
    //   - x1 contains the selector
    //   - x16 contains the isa
    //   - other registers are set as per calling conventions
    //
LLookupStart$1:

//---- p1 = SEL, p16 = isa --- #define CACHE (2 * __SIZEOF_POINTER__),其中 __SIZEOF_POINTER__表示pointer的大小 ,即 2*8 = 16
//---- p11 = mask|buckets -- 从x16(即isa)中平移16字节,取出cache 存入p11寄存器 -- isa距离cache 正好16字节:isa(8字节)-superClass(8字节)-cache(mask高16位 + buckets低48位)
    ldr p11, [x16, #CACHE]              
//---- 64位真机
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16 
//--- p11(cache) & 0x0000ffffffffffff ,mask高16位抹零,得到buckets 存入p10寄存器-- 即去掉mask,留下buckets
    and p10, p11, #0x0000ffffffffffff   // p10 = buckets 
    
//--- p11(cache)右移48位,得到mask(即p11 存储mask),mask & p1(msgSend的第二个参数 cmd-sel) ,得到sel-imp的下标index(即搜索下标) 存入p12(cache insert写入时的哈希下标计算是 通过 sel & mask,读取时也需要通过这种方式)
    and p12, p1, p11, LSR #48       // x12 = _cmd & mask 

//--- 非64位真机
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4 
    and p10, p11, #~0xf         // p10 = buckets
    and p11, p11, #0xf          // p11 = maskShift
    mov p12, #0xffff
    lsr p11, p12, p11               // p11 = mask = 0xffff >> p11
    and p12, p1, p11                // x12 = _cmd & mask
#else
#error Unsupported cache mask storage for ARM64.
#endif

//--- p12是下标 p10是buckets数组首地址,下标 * 1<<4(即16) 得到实际内存的偏移量,通过buckets的首地址偏移,获取bucket存入p12寄存器
//--- LSL #(1+PTRSHIFT)-- 实际含义就是得到一个bucket占用的内存大小 -- 相当于mask = occupied -1-- _cmd & mask -- 取余数
    add p12, p10, p12, LSL #(1+PTRSHIFT)   
                     // p12 = buckets + ((_cmd & mask) << (1+PTRSHIFT)) -- PTRSHIFT是3
                     
//--- 从x12(即p12)中取出 bucket 分别将imp和sel 存入 p17(存储imp) 和 p9(存储sel)
    ldp p17, p9, [x12]      // {imp, sel} = *bucket 
    
//--- 比较 sel 与 p1(传入的参数cmd)
1:  cmp p9, p1          // if (bucket->sel != _cmd) 
//--- 如果不相等,即没有找到,请跳转至 2f
    b.ne    2f          //     scan more 
//--- 如果相等 即cacheHit 缓存命中,直接返回imp
    CacheHit $0         // call or return imp 
    
2:  // not hit: p12 = not-hit bucket
//--- 如果一直都找不到, 因为是normal ,跳转至__objc_msgSend_uncached
    CheckMiss $0            // miss if bucket->sel == 0 
//--- 判断p12(下标对应的bucket) 是否 等于 p10(buckets数组第一个元素,),如果等于,则跳转至第3步
    cmp p12, p10        // wrap if bucket == buckets 
//--- 定位到最后一个元素(即第一个bucket)
    b.eq    3f 
//--- 从x12(即p12 buckets首地址)- 实际需要平移的内存大小BUCKET_SIZE,得到得到第二个bucket元素,imp-sel分别存入p17-p9,即向前查找
    ldp p17, p9, [x12, #-BUCKET_SIZE]!  // {imp, sel} = *--bucket 
//--- 跳转至第1步,继续对比 sel 与 cmd
    b   1b          // loop 

3:  // wrap: p12 = first bucket, w11 = mask
#if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
//--- 人为设置到最后一个元素
//--- p11(mask)右移44位 相当于mask左移4位,直接定位到buckets的最后一个元素,缓存查找顺序是向前查找
    add p12, p12, p11, LSR #(48 - (1+PTRSHIFT)) 
                    // p12 = buckets + (mask << 1+PTRSHIFT) 
#elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
    add p12, p12, p11, LSL #(1+PTRSHIFT)
                    // p12 = buckets + (mask << 1+PTRSHIFT)
#else
#error Unsupported cache mask storage for ARM64.
#endif

    // Clone scanning loop to miss instead of hang when cache is corrupt.
    // The slow path may detect any corruption and halt later.
//--- 再查找一遍缓存()
//--- 拿到x12(即p12)bucket中的 imp-sel 分别存入 p17-p9
    ldp p17, p9, [x12]      // {imp, sel} = *bucket 
    
//--- 比较 sel 与 p1(传入的参数cmd)
1:  cmp p9, p1          // if (bucket->sel != _cmd) 
//--- 如果不相等,即走到第二步
    b.ne    2f          //     scan more 
//--- 如果相等 即命中,直接返回imp
    CacheHit $0         // call or return imp  
    
2:  // not hit: p12 = not-hit bucket
//--- 如果一直找不到,则CheckMiss
    CheckMiss $0            // miss if bucket->sel == 0 
//--- 判断p12(下标对应的bucket) 是否 等于 p10(buckets数组第一个元素)-- 表示前面已经没有了,但是还是没有找到
    cmp p12, p10        // wrap if bucket == buckets 
    b.eq    3f //如果等于,跳转至第3步
//--- 从x12(即p12 buckets首地址)- 实际需要平移的内存大小BUCKET_SIZE,得到得到第二个bucket元素,imp-sel分别存入p17-p9,即向前查找
    ldp p17, p9, [x12, #-BUCKET_SIZE]!  // {imp, sel} = *--bucket 
//--- 跳转至第1步,继续对比 sel 与 cmd
    b   1b          // loop 

LLookupEnd$1:
LLookupRecover$1:
3:  // double wrap
//--- 跳转至JumpMiss 因为是normal ,跳转至__objc_msgSend_uncached

    JumpMiss $0 
.endmacro

//以下是最后跳转的汇编函数
.macro CacheHit
.if $0 == NORMAL
    TailCallCachedImp x17, x12, x1, x16 // authenticate and call imp
.elseif $0 == GETIMP
    mov p0, p17
    cbz p0, 9f          // don't ptrauth a nil imp
    AuthAndResignAsIMP x0, x12, x1, x16 // authenticate imp and re-sign as IMP
9:  ret             // return IMP
.elseif $0 == LOOKUP
    // No nil check for ptrauth: the caller would crash anyway when they
    // jump to a nil IMP. We don't care if that jump also fails ptrauth.
    AuthAndResignAsIMP x17, x12, x1, x16    // authenticate imp and re-sign as IMP
    ret             // return imp via x17
.else
.abort oops
.endif
.endmacro

.macro CheckMiss
    // miss if bucket->sel == 0
.if $0 == GETIMP 
//--- 如果为GETIMP ,则跳转至 LGetImpMiss
    cbz p9, LGetImpMiss
.elseif $0 == NORMAL 
//--- 如果为NORMAL ,则跳转至 __objc_msgSend_uncached
    cbz p9, __objc_msgSend_uncached
.elseif $0 == LOOKUP 
//--- 如果为LOOKUP ,则跳转至 __objc_msgLookup_uncached
    cbz p9, __objc_msgLookup_uncached
.else
.abort oops
.endif
.endmacro

.macro JumpMiss
.if $0 == GETIMP
    b   LGetImpMiss
.elseif $0 == NORMAL
    b   __objc_msgSend_uncached
.elseif $0 == LOOKUP
    b   __objc_msgLookup_uncached
.else
.abort oops
.endif
.endmacro

接下来我们梳理一下流程:

  1. ldr p11, [x16,:通过cache首地址平移16字节(因为在objc_class中,首地址距离cache正好16字节,即isa8字节,superClass8字节),获取cahcecache高16位mask低48位buckets, 得到p11 = cache
  2. cache中分别取出bucketsmask,并由mask根据哈希算法计算出哈希下标
    • and p10, p11:通过cache和掩码(即0x0000ffffffffffff)的 &运算,将高16位mask抹零,得到buckets指针地址, 得到p10 = buckets,将cache右移48位,得到mask,即p11 = mask
    • and p12, p1, p11, LSR:将objc_msgSend的参数p1(即第二个参数_cmd)& msak,通过哈希算法,得到需要查找存储sel-impbucket下标index,得到p12 = index = _cmd & mask,为什么通过这种方式呢?因为在存储sel-imp时,也是通过同样哈希算法计算哈希下标进行存储,所以读取也需要通过同样的方式读取。
  3. add p12, p10, p12, LSL:根据所得的哈希下标indexbuckets首地址,取出哈希下标对应的bucket
    • 其中PTRSHIFT等于3,左移4位(即2^4 = 16字节)的目的是计算出一个bucket实际占用的大小,结构体bucket_tsel8字节,imp8字节
    • 根据计算的哈希下标index 乘以 单个bucket占用的内存大小,得到buckets首地址在实际内存中的偏移量
    • 通过首地址 + 实际偏移量,获取哈希下标index对应的bucket
  4. ldp p17, p9, [x12]:根据获取的bucket,取出其中的imp存入p17,即p17 = imp,取出sel存入p9,即p9 = sel
  5. 第一次递归循环
    • cmp p9, p1:比较获取的bucketselobjc_msgSend的第二个参数的_cmd(即p1)是否相等
    • CacheHit $0:如果相等,则直接跳转至CacheHit,即缓存命中,返回imp
    • b.ne 2f:如果不相等,有以下两种情况
      • CheckMiss $0:如果一直都找不到,直接跳转至CheckMiss,因为$0normal,会跳转至__objc_msgSend_uncached,即进入慢速查找流程
      • cmp p12, p10:如果index获取的bucket 等于buckets的第一个元素,
        • ldp p17, p9, [x12,:如果人为的将当前bucket设置为buckets的最后一个元素(通过buckets首地址+mask右移44位(等同于左移4位)直接定位到bucker的最后一个元素),然后继续进行递归循环(第一个递归循环嵌套第二个递归循环)
  6. b 1b:第二次递归循环:重复【5】的操作,与【5】中唯一区别是,如果当前的bucket还是等于buckets的第一个元素,则直接跳转至JumpMiss,此时的$0normal,也是直接跳转至__objc_msgSend_uncached,即进入慢速查找流程

源码流程图

接下来我们可以总结一个源码流程图
快速查找流程图
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,711评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,932评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,770评论 0 330
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,799评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,697评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,069评论 1 276
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,535评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,200评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,353评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,290评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,331评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,020评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,610评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,694评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,927评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,330评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,904评论 2 341