拯救你那些富集不到结果的基因

数据整理

因为这个是我学生的真实数据,所以就不方便放出来给大家做示例文件了,可以只看代码,或者拿自己的数据练练手。

library(org.Hs.eg.db) 
library(clusterProfiler)
library(dplyr) 
library(ggplot2)
deg=read.csv("deg.csv",row.names = 1)
head(deg)
##           ensembl      logFC     logCPM      PValue        FDR change ENTREZID
## 1 ENSG00000000003  0.1655532  5.0415800 0.467563867 0.79040699    not     7105
## 2 ENSG00000000419  0.3873324  5.8257517 0.074773161 0.30181701    not     8813
## 3 ENSG00000000457 -0.3431328  0.8672989 0.517593456 0.80314607    not    57147
## 4 ENSG00000000460  0.5544268  2.1875783 0.107585303 0.37378191    not    55732
## 5 ENSG00000000971  0.3512430 -0.2066577 0.679314330 0.91718616    not     3075
## 6 ENSG00000001036  0.6269545  5.5618964 0.004645405 0.05314606    not     2519
gene_diff = deg$ENTREZID[deg$change != 'not']
length(gene_diff)
## [1] 975

975个基因做不出GO富集,我的第一反应是孩子学艺不精,然后看了他的代码,排除了可能的代码错误和物种错误,我发现他做的富集分析是没有错的!

ego <- enrichGO(gene = gene_diff,
                OrgDb= org.Hs.eg.db,
                ont = "ALL",
                readable = TRUE)
dim(ego)
## [1] 0 9

如果你是kegg富集不到,那我就会发这个链接(简书放不了链接,感兴趣的话去生信星球公号看吧)

但是这可是975个基因,GO的富集分析居然做不出来,实属诡异啊。让我有了想拯救一下的心思。

拯救计划1

首先是不卡p值,pvalueCutoff = 1。就算不显著,你也得让我看见结果,端详一下嘛。

ego1 <- enrichGO(gene = gene_diff,
                OrgDb= org.Hs.eg.db,
                ont = "ALL",
                pvalueCutoff = 1,
                readable = TRUE)
dim(ego1)
## [1] 73 10
table(ego1@result$pvalue<0.05)
## 
## TRUE 
##   73
table(ego1@result$p.adjust<0.05)
## 
## FALSE 
##    73
par(mfrow = c(1,2))
plot(sort(ego1@result$pvalue))
plot(sort(ego1@result$p.adjust))

adjust之后,就全都不显著了,而clusterProfiler默认是按照p.adjust来做各项分析的。

一个可选的操作,用p值筛选条目,然后自己画后面的条带图和气泡图交差,写文章的时候要写明白你用的是原始p值!会不会被怼就要看运气啦。

拯救计划2

经神奇豆豆指点,发现了两个enrichGO的参数,minGSSize = 10,maxGSSize = 500,这是限制每个term里面基因数量的参数,默认只计算那些10-500个基因的term,就避免了父节点子节点一起出现在你的结果里。但目前我们遇到的是子节点富集不到,那调大一点也是可以的。只不过要结合生物学意义,看这些大的term能不能和自己的实验设计联系起来。

ego2 <- enrichGO(gene = gene_diff,
                 OrgDb= org.Hs.eg.db,
                 ont = "ALL",
                 pvalueCutoff = 1,
                 maxGSSize = 5000,
                 minGSSize = 5,
                 readable = TRUE)
dim(ego2)
## [1] 230  10
table(ego2@result$p.adjust<0.05)
## 
## FALSE  TRUE 
##   210    20

跌跌撞撞有了结果,可以挑一挑啦啊。

拯救计划3

既然超几何分布检验不太行,那不如用GSEA来试试咯。 GO数据库的GSEA分析有两个做法,一个是简单的专用函数gseGO:

#rm(list = ls())
library(GSVA)
library(GSEABase)
library(msigdbr)
library(clusterProfiler)
library(org.Hs.eg.db)
library(enrichplot)
library(limma)
#install.packages("tinyarray")
library(tinyarray)
ge = deg$logFC
names(ge) = deg$ENTREZID
ge = sort(ge,decreasing = T)
head(ge)
##     6751    79585   400566    57615     6638    57540 
## 7.931213 7.096336 6.659524 6.659524 6.553707 6.553707
em <- gseGO(geneList     = ge,
              OrgDb        = org.Hs.eg.db,
              ont          = "ALL")
dim(em)
## [1]  7 12

一个是使用msigdbr里的数据,虽然麻烦一些,但是支持更多的基因集。

GO_df = msigdbr(species = "Homo sapiens",category = "C5") %>% 
  dplyr::select(entrez_gene,gs_exact_source,gs_subcat)
GO_df = GO_df[GO_df$gs_subcat!="HPO",]
table(GO_df$gs_subcat)
## 
##  GO:BP  GO:CC  GO:MF 
## 722231 112249 116388
GO_df = GO_df[,c(2,1)]
head(GO_df)
## # A tibble: 6 x 2
##   gs_exact_source entrez_gene
##   <chr>                 <int>
## 1 GO:0009256            10840
## 2 GO:0009256           160428
## 3 GO:0009256             4522
## 4 GO:0009256            25902
## 5 GO:0009256           441024
## 6 GO:0006103            51166
em2 <- GSEA(ge, TERM2GENE = GO_df)
dim(em2)
## [1]  5 11

这下没有缺憾啦,岁月静好,可以交差。

gseaplot2(em, geneSetID = 1, title = em$Description[1])

拯救计划4

神奇豆豆最近埋头开发他的R包,他让我用他的包试试,因为支持的geneid比orgDb多一些。

#install.packages("genekitr")
library(genekitr)
gene_diff = as.character(gene_diff)
ego3 <- genGO(gene_diff,
  org = "human",
  ont = "all"
)
## Error in genGO(gene_diff, org = "human", ont = "all"): No GO terms enriched ...
dim(ego3)
## Error in eval(expr, envir, enclos): object 'ego3' not found
# 也没富集到,但是它也有那两个参数
ego4 <- genGO(gene_diff,
  org = "human",
  ont = "all",
  maxGSSize = 5000,
  minGSSize = 5
)
dim(ego4)
## [1] 20 13

搞起来啦。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容