- Message是什么
Message implements Parcelable
其构造方法是没有参数,注释也推荐我们使用obtain()构建
通过重载static方法obtain和recycleUnchecked知道其有几个重要的参数
集合平时的使用以及注释,其中大部分参数我们知道他的用途
说说不常见的 flags标记当前message状态,包括是否支持异步
when什么时候发送//TO do
gCheckRecycle判断是否在回收正在使用的messsage时抛出异常IllegalStateException小于LOLLIPOP不能抛
最重要的4个静态变量:
sPoolSync是对象锁,虽然是Object,synchronized使用在链式加减、取出和新增的时候使用
sPoolSize当前回收池大小
MAX_POOL_SIZE是回收池最大值
sPool当前链式最顶层和Message对象内部的next组成了全局唯一的回收池(范围是当前进程)
应该是message在android内部使用很频繁,而java不是立马进行垃圾回收的所以建立一个回收池;
如果不是使用obtain()就让回收池失去了意义。
int flags /*package*/
long when /*package*/
public int what
public int arg1
public int arg2
Bundle data
Runnable callback
Message next
Handler target
/**
* An arbitrary object to send to the recipient. When using
* {@link Messenger} to send the message across processes this can only
* be non-null if it contains a Parcelable of a framework class (not one
* implemented by the application). For other data transfer use
* {@link #setData}.
*
* <p>Note that Parcelable objects here are not supported prior to
* the {@link android.os.Build.VERSION_CODES#FROYO} release.
*/
public Object obj;
/**
* Optional Messenger where replies to this message can be sent. The
* semantics of exactly how this is used are up to the sender and
* receiver.
*/
public Messenger replyTo
/**
* Optional field indicating the uid that sent the message. This is
* only valid for messages posted by a {@link Messenger}; otherwise,
* it will be -1.
*/
public int sendingUid = -1
public static final Object sPoolSync = new Object();
private static Message sPool;
private static int sPoolSize = 0;
private static final int MAX_POOL_SIZE = 50;
private static boolean gCheckRecycle = true;
- Handler
因为不是数据载体,所以不能直接像上面一样分析
通常我们会new一个Handler,所以我们先分析构造方法
不带Looper的构造方法最终会走到Handler(Callback callback, boolean async)
带Looper最终会走到Handler(Looper looper, Callback callback, boolean async)
先说一下他们的共同点callback和async没有参数默认值null和false;
区别:
不带looper:mLooper = Looper.myLooper();mQueue = mLooper.mQueue;
带looper:mLooper = looper;mQueue = looper.mQueue;
那么Looper.myLooper()从Looper的sThreadLocal.get()获取;这里有一个前提是不带looper的必须在UI线程创建;
而sThreadLocal.get()给出了最好的答案,mLooper == null会抛出异常;
那么是谁在UI线程中创建了myLooper()
/**
* Use the {@link Looper} for the current thread with the specified callback interface
* and set whether the handler should be asynchronous.
*
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
*
* Asynchronous messages represent interrupts or events that do not require global ordering
* with respect to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
/**
* Use the provided {@link Looper} instead of the default one and take a callback
* interface in which to handle messages. Also set whether the handler
* should be asynchronous.
*
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
*
* Asynchronous messages represent interrupts or events that do not require global ordering
* with respect to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by conditions such as display vsync.
*
* @param looper The looper, must not be null.
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
*
* @hide
*/
public Handler(Looper looper, Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
-
Looper.prepareMainLooper();
这个方法在ActivityThread的Main方法中调用(//TODO回头贴链接)
prepare(false)方法里调用了sThreadLocal.set(new Looper(false))
new Looper(false)新建了MessageQueue要注意UI线程false,同时mThread = Thread.currentThread();
然后设置sMainLooper = myLooper(),sMainLooper一般sdk用来检测当前线程是否是主线程即UI线程;
所以我们总结一下handler的创建方式:
主线程:Handler handler = new Handler()不带looper的三种方法都可以
Handler handler = new Handler(Looper.sMainLooper)带looper的三种方法都可以
其他线程:Looper.prepare();Handler handler = new Handler()不带looper的三种方法都可以,不要忘了前面那句
Handler handler = new Handler(Looper.prepare())带looper的三种方法都可以public static void prepareMainLooper() { prepare(false); synchronized (Looper.class) { if (sMainLooper != null) { throw new IllegalStateException("The main Looper has already been prepared."); } sMainLooper = myLooper(); } } private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); } private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }
-
handler.sendMessage()
handler.post(Runnable r)所有类似的post方法都是调用getPostMessage方法封装成message发送
handler.sendEmptyMessage(int what)所有类似的sendEmptyMessage方法都是调用Message msg = Message.obtain()生成msg后把所有参数都赋值给新生成的msg后发送
关于sendMessage这里有4种方法:
前3个是往下调用关系,sendMessageAtTime和sendMessageAtFrontOfQueue都直接调用enqueueMessage:- —> sendMessage(Message msg),调用下一个方法参数delayMillis=0
- —> sendMessageDelayed(Message msg, long delayMillis)调用下一个方法参数uptimeMillis=SystemClock.uptimeMillis() + delayMillis
- —> sendMessageAtTime(Message msg, long uptimeMillis)
- sendMessageAtFrontOfQueue(Message msg)是直接放到队列前面
——————————————————————————————这里分割 - —> enqueueMessage(queue, msg, uptimeMillis),最终都走了这个方法只不过sendMessageAtFrontOfQueue的参数uptimeMillis=0
还有一个特殊点的message.sendToTarget(),因为他的target是Handler所以还是走sendMessage(Message msg)
public void sendToTarget() { target.sendMessage(this); }
-
enqueueMessage()
// Handler.java
当前Handler是否支持异步,如果支持修改message的flags属性,
然后加入队列,这里的queue来自looperprivate boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
-
enqueueMessage(Message msg, long when)
// MessageQueue.java
mQuitting默认false,如果为true回收message,并且返回false;
正常流程- 标记message在使用,将message.when重置为传入的when
- (1)如果p == null || when == 0 || when < p.when,队列第一个messsage不是空,参数message的when=0且小于第一个messsage的when
- (2)否则p!=null && when>0&&when < p.when,
needWake必定为false,因为加入队列的message必定target不为空,
无线for循环pre、p和p.next迭代获取p如果为空或者加入队列message的when小于p.when,就让msg.next = p以及pre.next = msg - 如果needWake=true,nativeWake(mPtr)注释说可以假定mPtr != 0;
此方法的调用应该是来自native层,当然不排除package内的调用,因为java层正常添加的message都会有target,
boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); return false; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }
-
Looper.loop()
这个方法在ActivityThread的Main方法最后调用
主要看无限for循环- 当前线程Looprt队列的next()获取Message msg
- if (msg == null) return退出
- mSlowDispatchThresholdMs 最大分发时间,log时间
mSlowDeliveryThresholdMs 最大发送时间delivery time - post time,log时间
thresholdOverride默认值0,通过adb设置
这些不是很重要打log用 - msg.target.dispatchMessage(msg);
- msg.recycleUnchecked()
public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); // Allow overriding a threshold with a system prop. e.g. // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start' final int thresholdOverride = SystemProperties.getInt("log.looper." + Process.myUid() + "." + Thread.currentThread().getName() + ".slow", 0); boolean slowDeliveryDetected = false; for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } final long traceTag = me.mTraceTag; long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs; if (thresholdOverride > 0) { slowDispatchThresholdMs = thresholdOverride; slowDeliveryThresholdMs = thresholdOverride; } final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0); final boolean logSlowDispatch = (slowDispatchThresholdMs > 0); final boolean needStartTime = logSlowDelivery || logSlowDispatch; final boolean needEndTime = logSlowDispatch; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0; final long dispatchEnd; try { msg.target.dispatchMessage(msg); dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0; } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (logSlowDelivery) { if (slowDeliveryDetected) { if ((dispatchStart - msg.when) <= 10) { Slog.w(TAG, "Drained"); slowDeliveryDetected = false; } } else { if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery", msg)) { // Once we write a slow delivery log, suppress until the queue drains. slowDeliveryDetected = true; } } } if (logSlowDispatch) { showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg); } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
-
Message next()
final long ptr = mPtr
如果ptr==0 直接返回空
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
以下无限for循环:如果nextPollTimeoutMillis != 0,调用Binder.flushPendingCommands()
nativePollOnce(ptr, nextPollTimeoutMillis)
阻塞nextPollTimeoutMillis毫秒,>0到达时间继续往下执行,0继续执行,-1永远停止-
synchronized (this) 同步代码块--开始-------------
设置 now = SystemClock.uptimeMillis();
设置 Message prevMsg = null;
设置 Message msg = mMessages;IF 如果msg!=null并且msg.target==null,
dowhile循环,
do:会设置prevMsg = msg,msg = msg.next;
while:msg != null && !msg.isAsynchronous(),就是msg为空或者异步退出当前循环,
msg是否异步取决与Handler是否有设置默认是false,如果没有handler就是msg自身的值;这个过程1 . IF 如果msg不为空:
(1)if 如果now < msg.when:
计算nextPollTimeoutMillis取msg.when - now和 Integer.MAX_VALUE之间最小值
(2)else :
mBlocked = false
如果prevMsg != null,prevMsg.next = msg.next
如果prevMsg == null,mMessages = msg.next;并且清空msg.next,然后标记msg.markInUse(),最后返回,因为回收的msg会进入回收池2 . ELSE :
nextPollTimeoutMillis = -1如果mQuitting=true,调用dispose(),dispose()内部执行如果mPtr != 0销毁底层队列且mPtr = 0,完成dispose()方法后返回null;
如果pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)设置pendingIdleHandlerCount = mIdleHandlers.size();
这是为了第一次循环时队列中没有msg或者msg没有到执行时间,因为pendingIdleHandlerCount默认-1-
如果pendingIdleHandlerCount <= 0那么mBlocked = true并且跳过本次循环;
因为此时nextPollTimeoutMillis = -1,那么调用nativePollOnce(ptr, nextPollTimeoutMillis)就会阻塞
如果IdleHandler[] mPendingIdleHandlers = null,就new一个数组,数组大小在pendingIdleHandlerCount和mIdleHandlers.size()直接选择最大值
将ArrayList<IdleHandler> mIdleHandlers转成数组加入mPendingIdleHandlers
synchronized (this) 同步代码块--结束-------------
-
内部for循环int i = 0; i < pendingIdleHandlerCount; i++
迭代数组IdleHandler[] mPendingIdleHandlers
每次keep默认值为false
每次keep = idler.queueIdle(),获取当前数组item,然后把item的queueIdle()返回值给keep
如果keep=flase,同步从数组移出当前item源码里重写IdleHandler类时都会返回false,因为如果返回ture,在loop空闲时会一直调用mIdleHandlers里的元素,这样cpu就得不到休息了
pendingIdleHandlerCount = 0;
nextPollTimeoutMillis = 0;如果nativePollOnce(ptr, nextPollTimeoutMillis),不会停止会继续走下去
无限for循环结束
Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) { return null; } int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf(TAG, "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } } /** * Callback interface for discovering when a thread is going to block * waiting for more messages. */ public static interface IdleHandler { /** * Called when the message queue has run out of messages and will now * wait for more. Return true to keep your idle handler active, false * to have it removed. This may be called if there are still messages * pending in the queue, but they are all scheduled to be dispatched * after the current time. */ boolean queueIdle(); }
-
msg.target.dispatchMessage(msg);
指向Handler内部的dispatchMessage(Message msg)- IF msg.callback不等于空就调用
- ELSE
- IF mCallback != null
如果mCallback.handleMessage(msg)=true,就return - 调用handleMessage(msg)
- IF mCallback != null
/** * Handle system messages here. */ public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } handleMessage(msg); } }
-
handleCallback(msg)
如果message有callback优先处理,且不会经过handler的callback和handleMessage
private static void handleCallback(Message message) { message.callback.run(); } Message Runnable callback;
-
mCallback.handleMessage(msg)
如果没有给msg设置callback
就调用handler的mCallback的handleMessage
如果返回true就不调用handleMessage(msg),直接return
public interface Callback { /** * @param msg A {@link android.os.Message Message} object * @return True if no further handling is desired */ public boolean handleMessage(Message msg); }
-
handleMessage(msg)
子类重写用来处理消息
如果msg.callback=null或者mCallback=null或者mCallback.handleMessage返回false
就会调用,handler内部是空实现
-
msg.recycleUnchecked()
除了flags = FLAG_IN_USE和sendingUid = -1
其他全部置为空或者0
回收池增加,同时将Message持有的msg给当前对象的next,并且将当前对象置顶
/** * Recycles a Message that may be in-use. * Used internally by the MessageQueue and Looper when disposing of queued Messages. */ void recycleUnchecked() { // Mark the message as in use while it remains in the recycled object pool. // Clear out all other details. flags = FLAG_IN_USE; what = 0; arg1 = 0; arg2 = 0; obj = null; replyTo = null; sendingUid = -1; when = 0; target = null; callback = null; data = null; synchronized (sPoolSync) { if (sPoolSize < MAX_POOL_SIZE) { next = sPool; sPool = this; sPoolSize++; } } }