协程在python中的演化

维基百科协程定义:

协程 是为非抢占式多任务产生子程序的计算机程序组件,
协程允许不同入口点在不同位置暂停或开始执行程序。
通俗来说,协程就是你可以暂停启动执行的函数。

web服务以I/O是瓶颈,而这这是协程所擅长的:
多任务并发,每个任务在合适的时候挂起(发起I/O)和恢复(I/O结束)

Python中的协程经历了很长的一段发展历程。其大概经历了如下三个阶段:

1.最初的生成器变形yield/send
2.引入@asyncio.coroutine和yield from
3.在最近的Python3.5版本中引入async/await关键字

Python 2.2中,生成器第一次在PEP 255中提出(那时也把它成为迭代器,因为它实现了迭代器协议(https://docs.python.org/3/library/stdtypes.html#iterator-types)

从yield说起:

def old_fib(n):
    res = [0] * n
    index = 0
    a = 0
    b = 1
    while index < n:
        res[index] = b
        a, b = b, a + b
        index += 1
    return res
        
print('-'*10 + 'test old fib' + '-'*10)
for fib_res in old_fib(20):
    print(fib_res)

如果我们仅仅是需要拿到斐波那契序列的第n位,或者仅仅是希望依此产生斐波那契序列,那么上面这种传统方式就会比较耗费内存。

这时,yield就派上用场了。

def fib(n):
    index = 0
    a = 0
    b = 1
    while index < n:
        yield b
        a, b = b, a + b
        index += 1

print('-'*10 + 'test yield fib' + '-'*10)
for fib_res in fib(20):
    print(fib_res)

当一个函数中包含yield语句时,python会自动将其识别为一个生成器。这时fib(20)并不会真正调用函数体,而是以函数体生成了一个生成器对象实例。
yield在这里可以保留fib函数的计算现场,暂停fib的计算并将b返回。而将fib放入for…in循环中时,每次循环都会调用next(fib(20)),唤醒生成器,执行到下一个yield语句处,直到抛出StopIteration异常。此异常会被for循环捕获,导致跳出循环

如果可以利用生成器“暂停”的部分,添加“将东西发送回生成器”的功能,那么 Python 突然就有了协程的概念。

将东西发送回暂停了的生成器这一特性通过 PEP 342添加到了 Python 2.5。与其它特性一起,PEP 342 为生成器引入了 send() 方法。这让我们不仅可以暂停生成器,而且能够传递值到生成器暂停的地方。

python yield底层实现:https://www.cnblogs.com/coder2012/p/4990834.html

Send

从上面的程序中可以看到,目前只有数据从fib(20)中通过yield流向外面的for循环;如果可以向fib(20)发送数据,那就可以在Python中实现协程了(实现了协程的定义)。

于是,Python中的生成器有了send函数,yield表达式也拥有了返回值。

我们用这个特性,模拟一个额慢速斐波那契数列的计算:

def stupid_fib(n):
    index = 0
    a = 0
    b = 1
    while index < n:
        sleep_cnt = yield b
        print('let me think {0} secs'.format(sleep_cnt))
        time.sleep(sleep_cnt)
        a, b = b, a + b
        index += 1
print('-'*10 + 'test yield send' + '-'*10)
N = 20
sfib = stupid_fib(N)
fib_res = next(sfib)
while True:
    print(fib_res)
    try:
        fib_res = sfib.send(random.uniform(0, 0.5))
    except StopIteration:
        break

其中next(sfib)相当于sfib.send(None),可以使得sfib运行至第一个yield处返回。后续的sfib.send(random.uniform(0, 0.5))则将一个随机的秒数发送给sfib,作为当前中断的yield表达式的返回值。
这样,我们可以从“主”程序中控制协程计算斐波那契数列时的思考时间,协程可以返回给“主”程序计算结果

yield from

Python3.3版本的PEP 380中添加了yield from语法,允许一个generator生成器将其部分操作委派给另一个生成器。
[图片上传失败...(image-e08049-1529418139789)]

提供了一个调用者和子生成器之间的透明的双向通道。包括从子生成器获取数据以及向子生成器传送数据

对于简单的迭代器

yield from iterator    

(本质上)相当于:

for x in iterator:
    yield x

yield from用于重构生成器,简单的,可以这么使用:

def copy_fib(n):
    print('I am copy from fib')
    yield from fib(n)
    print('Copy end')
print('-'*10 + 'test yield from' + '-'*10)
for fib_res in copy_fib(20):
    print(fib_res)

asyncio.coroutine和yield from

yield from在asyncio模块中得以发扬光大:

@asyncio.coroutine
def smart_fib(n):
    index = 0
    a = 0
    b = 1
    while index < n:
        sleep_secs = random.uniform(0, 0.2)
        yield from asyncio.sleep(sleep_secs)
        print('Smart one think {} secs to get {}'.format(sleep_secs, b))
        a, b = b, a + b
        index += 1

@asyncio.coroutine
def stupid_fib(n):
    index = 0
    a = 0
    b = 1
    while index < n:
        sleep_secs = random.uniform(0, 0.4)
        yield from asyncio.sleep(sleep_secs)
        print('Stupid one think {} secs to get {}'.format(sleep_secs, b))
        a, b = b, a + b
        index += 1

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    tasks = [
        asyncio.async(smart_fib(10)),
        asyncio.async(stupid_fib(10)),
    ]
    loop.run_until_complete(asyncio.wait(tasks))
    print('All fib finished.')
    loop.close()

asyncio是一个基于事件循环的实现异步I/O的模块。通过yield from,我们可以将协程asyncio.sleep的控制权交给事件循环,然后挂起当前协程;之后,由事件循环决定何时唤醒asyncio.sleep,接着向后执行代码。

这样说可能比较抽象,好在asyncio是一个由python实现的模块,那么我们来看看asyncio.sleep中都做了些什么:

@coroutine
def sleep(delay, result=None, *, loop=None):
    """Coroutine that completes after a given time (in seconds)."""
    future = futures.Future(loop=loop)
    h = future._loop.call_later(delay,
                                future._set_result_unless_cancelled, result)
    try:
        return (yield from future)
    finally:
        h.cancel()

首先,sleep创建了一个Future对象,作为更内层的协程对象,通过yield from交给了事件循环;其次,它通过调用事件循环的call_later函数,注册了一个回调函数。

通过查看Future类的源码,可以看到,Future是一个实现了iter对象的生成器:

  class Future:
    #blabla...
    def __iter__(self):
        if not self.done():
            self._blocking = True
            yield self  # This tells Task to wait for completion.
        assert self.done(), "yield from wasn't used with future"
        return self.result()  # May raise too.

那么当我们的协程yield from asyncio.sleep时,事件循环其实是与Future对象建立了联系。每次事件循环调用send(None)时,其实都会传递到Future对象的iter函数调用;而当Future尚未执行完毕的时候,就会yield self,也就意味着暂时挂起,等待下一次send(None)的唤醒。

当我们包装一个Future对象产生一个Task对象时,在Task对象初始化中,就会调用Future的send(None),并且为Future设置好回调函数。

  class Task(futures.Future):
    #blabla...
    def _step(self, value=None, exc=None):
        #blabla...
        try:
            if exc is not None:
                result = coro.throw(exc)
            elif value is not None:
                result = coro.send(value)
            else:
                result = next(coro)
        #exception handle
        else:
            if isinstance(result, futures.Future):
                # Yielded Future must come from Future.__iter__().
                if result._blocking:
                    result._blocking = False
                    result.add_done_callback(self._wakeup)
        #blabla...

    def _wakeup(self, future):
        try:
            value = future.result()
        except Exception as exc:
            # This may also be a cancellation.
            self._step(None, exc)
        else:
            self._step(value, None)
        self = None  # Needed to break cycles when an exception occurs.

预设的时间过后,事件循环将调用Future._set_result_unless_cancelled:

class Future:
    #blabla...
    def _set_result_unless_cancelled(self, result):
        """Helper setting the result only if the future was not cancelled."""
        if self.cancelled():
            return
        self.set_result(result)

    def set_result(self, result):
        """Mark the future done and set its result.

        If the future is already done when this method is called, raises
        InvalidStateError.
        """
        if self._state != _PENDING:
            raise InvalidStateError('{}: {!r}'.format(self._state, self))
        self._result = result
        self._state = _FINISHED
        self._schedule_callbacks()

这将改变Future的状态,同时回调之前设定好的Tasks._wakeup;在_wakeup中,将会再次调用Tasks._step,这时,Future的状态已经标记为完成,因此,将不再yield self,而return语句将会触发一个StopIteration异常,此异常将会被Task._step捕获用于设置Task的结果。同时,整个yield from链条也将被唤醒,协程将继续往下执行。

async和await

弄清楚了asyncio.coroutine和yield from之后,在Python3.5中引入的async和await就不难理解了:可以将他们理解成asyncio.coroutine/yield from的完美替身。当然,从Python设计的角度来说,async/await让协程表面上独立于生成器而存在,将细节都隐藏于asyncio模块之下,语法更清晰明了。

async def smart_fib(n):
    index = 0
    a = 0
    b = 1
    while index < n:
        sleep_secs = random.uniform(0, 0.2)
        await asyncio.sleep(sleep_secs)
        print('Smart one think {} secs to get {}'.format(sleep_secs, b))
        a, b = b, a + b
        index += 1

async def stupid_fib(n):
    index = 0
    a = 0
    b = 1
    while index < n:
        sleep_secs = random.uniform(0, 0.4)
        await asyncio.sleep(sleep_secs)
        print('Stupid one think {} secs to get {}'.format(sleep_secs, b))
        a, b = b, a + b
        index += 1

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    tasks = [
        asyncio.ensure_future(smart_fib(10)),
        asyncio.ensure_future(stupid_fib(10)),
    ]
    loop.run_until_complete(asyncio.wait(tasks))
    print('All fib finished.')
    loop.close()

Python中的协程就介绍完毕了。示例程序中都是以sleep为异步I/O的代表,在实际项目中,可以使用协程异步的读写网络、读写文件、渲染界面等,而在等待协程完成的同时,CPU还可以进行其他的计算。协程的作用正在于此。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,013评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,205评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,370评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,168评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,153评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,954评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,271评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,916评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,382评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,877评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,989评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,624评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,209评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,199评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,418评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,401评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,700评论 2 345

推荐阅读更多精彩内容