使用K-means及TF-IDF算法对中文文本聚类并可视化

点击查看原文

对于无监督学习来说,聚类算法对于数据挖掘、NLP处理等方向都有着非常重要的地位。常见的聚类算法比如K-means、BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies)、GMM(Gaussian mixture model)、GAAC(Group-average Agglomerative Clustering)等,但是用得最普遍的还是K-means算法,其时间复杂度低且实现的效果较好受到广泛的应用。

本文代码的相关环境为:

  • python3以上
  • sklearn 机器学习常用包
  • jieba 中文分词
  • matplotlib 可视化

准备语料

语料格式为每行表示一个文档(语句、文章等需要聚类的文本),行数表示需要聚类的所有文本。
类似这样的:


image.png

导入相关包

from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans
from data_utils import *
import jieba
import matplotlib.pyplot as plt

加载语料

# bigram分词
segment_bigram = lambda text: " ".join([word + text[idx + 1] for idx, word in enumerate(text) if idx < len(text) - 1])
# 结巴中文分词
segment_jieba = lambda text: " ".join(jieba.cut(text))

'''
    1、加载语料
'''
corpus = []
with open("sanhu.txt", "r", encoding="utf-8") as f:
    for line in f:
        # 去掉标点符号
        corpus.append(segment_jieba(remove_punc(line.strip())))

'''

代码中定义了两种分词方式,一种是单纯的使用bi-gram分词,一种是使用jieba进行中文分词,两份分词方式根据效果自己选择使用哪种。加载语料的时候把标点符号去掉,这对于文本聚类几乎没有作用。还可以去掉自己定义的一些类似“你”、“我”、“他”等大量口语化中均会出现的停止词,这类词语往往对聚类也起不到作用。

计算TF-IDF权重

'''
    2、计算tf-idf设为权重
'''

vectorizer = CountVectorizer()
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))

''' 
    3、获取词袋模型中的所有词语特征
    如果特征数量非常多的情况下可以按照权重降维
'''

word = vectorizer.get_feature_names()
print("word feature length: {}".format(len(word)))

''' 
    4、导出权重,到这边就实现了将文字向量化的过程,矩阵中的每一行就是一个文档的向量表示
'''
tfidf_weight = tfidf.toarray()

关于TF-IDF网上有很多教程都有详细的解释。这里解释下为什么用这个值作为权重。
将文本向量化的方式其实有很多,最简单的就是one-hot方式,在之前的文章中也讲过这种方式的实现原理,如果不用TF-IDF设置权重,那么,后面进行文本向量化之后的矩阵值只有0、1两种,词与词之间的权重没有进行区分,所以用这种方式设置权重。

文本聚类

'''
    5、对向量进行聚类
'''

# 指定分成7个类
kmeans = KMeans(n_clusters=7)
kmeans.fit(tfidf_weight)

# 打印出各个族的中心点
print(kmeans.cluster_centers_)
for index, label in enumerate(kmeans.labels_, 1):
    print("index: {}, label: {}".format(index, label))

# 样本距其最近的聚类中心的平方距离之和,用来评判分类的准确度,值越小越好
# k-means的超参数n_clusters可以通过该值来评估
print("inertia: {}".format(kmeans.inertia_))

k-means的缺陷之一就是需要自己指定需要分类的族数,也就是代码中的n_clusters,选择超参数的过程中,可以使用kmeans.inertia_值作为评估标准,其值越小越好。

可视化

'''
    6、可视化
'''

# 使用T-SNE算法,对权重进行降维,准确度比PCA算法高,但是耗时长
tsne = TSNE(n_components=2)
decomposition_data = tsne.fit_transform(tfidf_weight)

x = []
y = []

for i in decomposition_data:
    x.append(i[0])
    y.append(i[1])

fig = plt.figure(figsize=(10, 10))
ax = plt.axes()
plt.scatter(x, y, c=kmeans.labels_, marker="x")
plt.xticks(())
plt.yticks(())
# plt.show()
plt.savefig('./sample.png', aspect=1)

前面将文本向量化之后,每个文档的维度非常高,进行可视化之前需要对其降维,降维算法也有很多,这里使用T-SNE算法,其优点就是准确度比较高,但是耗时比较长,如果接受不了耗时长,可以使用PCA算法。
对降维后的数据decomposition_data用plt进行可视化。

效果显示

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容

  • 文本关键词抽取,是对文本信息进行高度凝练的一种有效手段,通过3-5个词语准确概括文本的主题,帮助读者快速理解文本信...
    atLee阅读 22,040评论 8 46
  • 常用概念: 自然语言处理(NLP) 数据挖掘 推荐算法 用户画像 知识图谱 信息检索 文本分类 常用技术: 词级别...
    御风之星阅读 9,148评论 1 25
  • SEO算法之TF-IDF算法 1、TF-IDF算法概念: TF-IDF(term frequency–invers...
    老朱seo阅读 1,017评论 2 3
  • 番外一 我心爱的姑娘 蓉儿少年时性子古怪多变,时而天真明媚,时而心狠手辣。有时觉得她心胸极阔,有时又觉得她小心...
    不如归处阅读 6,217评论 0 10
  • 得意者忘形,忘形者失意。 最近碰上件很重要的事,事关生活,没有大小。 我呆在重庆一个小地方,一个县城的新开发区。开...
    纸上落笔阅读 169评论 0 0