mysql8.0主从复制
https://www.jianshu.com/p/af1690d8d045
读写分离需要借助主从复制,因为如果不需要分表的数据,就需要将主DB的数据复制到从机上(也可以通过mycat设置成全局表)
通过mycat来控制权限,主机有读和写操作的权限,从机只有读操作权限
数据库分表分库,读写分离的出现,主要是数据库性能瓶颈
影响数据库性能的主要原因:
1.单表数据量太大
2.并发时的数据库连接数过大,单台数据库节点支撑不了
3.硬件资源(QPS/TPS)
水平分表和垂直分库
以上1 2 原因影响数据库性能瓶颈的主要解决方法就是水平分表和垂直分库
1.一般单表达到500万数据量和占2G硬盘内存时就会考虑水平分表和垂直分库,每个数据库有相同的表结构,可以通过取模算法来判断数据放到哪个数据库表中(id%数据库节点数)
2.用户访问数多时,当台数据库节点无法支撑时就会考虑业务分库和读写分离
目前主流的微服务架构就是通过业务来分库(比如user库、order库),可以减少单台数据库访问量
读写分离,通过mycat来控制,主机有读和写操作的权限,从机只有读操作权限
mycat的一些概念
分表分库和读写分离需要用到mycat中间件来协助。mycat内置分表的方案(取模、时间戳等),有全局表、分片表和ER表等概念
全局表具有以下特性:
• 全局表的插入、更新操作会实时在所有节点上执行,保持各个分片的数据一致性
• 全局表的查询操作,只从一个节点获取
• 全局表可以跟任何一个表进行 JOIN 操作
比如 用户等级表,权限表、数据字典表等可以用为全局表。所有DB节点上都需要数据一致性
这些表不设置成全局表,通过mysql主从复制来保证所有DB节点上都需要数据一致性也是可以的,mycat只做读写分离。
分片表:
数据量过大需要分表的数据库表理解成分片表,比如用户表,订单表。这些表数据库都很大
ER 分片表
有一类业务,例如订单(order)跟订单明细(order_detail),明细表会依赖于订单,也就是说会存在表的主
从关系,这类似业务的切分可以抽象出合适的切分规则,比如根据用户 ID 切分,其他相关的表都依赖于用户 ID,再或者根据订单 ID 切分,总之部分业务总会可以抽象出父子关系的表。这类表适用于 ER 分片表,子表的记录与所关联的父表记录存放在同一个数据分片上,避免数据 Join 跨库操作。
比如:订单表分表分库时。001订单在A节点(数据库)上,001订单的明细表也需要在A节点上,才能作关联查询。这时订单表就是分表片,订单明细表就是子表(ER分片表)
但是ER分片表在订单表进行扩容或缩容时很难进行迁移。所有一般会把ER分片表也设置成分片表,通过订单明细关联的订单号来进行分片(意思是订单明细表的分片字段就是订单表的分片字段(订单明细表的外键))
mycat的概念在mycat官方文档有说明
http://www.mycat.io/document/mycat-definitive-guide.pdf
centos7搭建mycat并实现分表分库和读写分离
mycat安装(linux版本)前的准备:
需要先安装jdk,和mysql,我用的jdk1.8和mysql8.0
实现分表分库和读写分离的示例场景:
1.有两台mysql服务器,搭建一主一从的主从复制(只复制db_store库)。搭建的操作在文章最开头的链接。
2.搭建好主从复制后,在主节点上创建两个db_store(配置了主从复制的库)和db_user数据库,并在db_store库创建store表(这个表通过主从复制来同步节点的数据,mycat对这个表只作读写分离作用)。
在db_user库创建data_dictionary(全局表)、user_address(ER分片表)、和users(分片表)
准备工作完成,开始搭建mycat
http://www.mycat.io/下载mycat1.6.7.1-release版本
解压mycat
tar -zxvf Mycat-server-1.6.7.1-release-20190627191042-linux.tar.gz
主要修改mycat的bin目录下的三个配置文件,配置文件的参数解析看mycat的文档,本文中有链接
第一个:schema.xml
<?xml version="1.0"?>
<!DOCTYPE mycat:schema SYSTEM "schema.dtd">
<mycat:schema xmlns:mycat="http://io.mycat/">
<!-- schema 配置mycat的逻辑库,与真实库对应 -->
<schema name="db_store" checkSQLschema="false" sqlMaxLimit="100">
<table name="store" dataNode="db_store_dataNode" primaryKey="storeID"/>
</schema>
<schema name="db_user" checkSQLschema="false" sqlMaxLimit="100">
<table name="data_dictionary" type="global" dataNode="db_user_dataNode1,db_user_dataNode2" primaryKey="dataDictionaryID"/>
<table name="users" dataNode="db_user_dataNode$1-2" rule="mod-userID-long" primaryKey="userID">
<childTable name="user_address" joinKey="userID" parentKey="userID" primaryKey="addressID"/>
</table>
</schema>
<!-- 节点配置 -->
<!-- db_store -->
<dataNode name="db_store_dataNode" dataHost="db_storeHOST" database="db_store" />
<!-- db_user -->
<dataNode name="db_user_dataNode1" dataHost="db_userHOST1" database="db_user" />
<dataNode name="db_user_dataNode2" dataHost="db_userHOST2" database="db_user" />
<!-- 节点主机配置、dataHost 物理数据库,真正存储数据的数据库 -->
<!-- 配置db_store的节点主机 -->
<dataHost name="db_storeHOST" maxCon="1000" minCon="10" balance="1"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="192.168.79.142:3306" user="root" password="123456">
<!-- can have multi read hosts -->
<readHost host="hostS1" url="192.168.79.144:3306" user="root" password="123456" />
</writeHost>
</dataHost>
<!-- 配置db_user的节点主机,users表需要分表分库操作,所有要配置两个dataHost-->
<dataHost name="db_userHOST1" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<writeHost host="userHost1" url="192.168.79.142:3306" user="root" password="123456">
</writeHost>
</dataHost>
<dataHost name="db_userHOST2" maxCon="1000" minCon="10" balance="0"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="userHost2" url="192.168.79.144:3306" user="root" password="123456">
</writeHost>
</dataHost>
</mycat:schema>
第二个:rule.xml
只需要增加mod-userID-long的tableRule,这个配置是给schema.xml引用的(rule="mod-userID-long"),这是定义users表的分片规则 <algorithm>mod-long</algorithm>表示通过schema.xml的primaryKey="userID"这个字段来取模进行分片
<tableRule name="mod-userID-long">
<rule>
<columns>userID</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
和修改<property name="count">2</property>的值为2,表示分片到两个数据库节点上。
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">2</property>
</function>
整个rule.xml配置(只增加一处和修改一处,其他都是默认的)
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mycat:rule SYSTEM "rule.dtd">
<mycat:rule xmlns:mycat="http://io.mycat/">
<tableRule name="rule1">
<rule>
<columns>id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<tableRule name="rule2">
<rule>
<columns>user_id</columns>
<algorithm>func1</algorithm>
</rule>
</tableRule>
<tableRule name="sharding-by-intfile">
<rule>
<columns>sharding_id</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<tableRule name="auto-sharding-long">
<rule>
<columns>id</columns>
<algorithm>rang-long</algorithm>
</rule>
</tableRule>
<tableRule name="mod-long">
<rule>
<columns>id</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<tableRule name="mod-userID-long">
<rule>
<columns>userID</columns>
<algorithm>mod-long</algorithm>
</rule>
</tableRule>
<tableRule name="sharding-by-murmur">
<rule>
<columns>id</columns>
<algorithm>murmur</algorithm>
</rule>
</tableRule>
<tableRule name="crc32slot">
<rule>
<columns>id</columns>
<algorithm>crc32slot</algorithm>
</rule>
</tableRule>
<tableRule name="sharding-by-month">
<rule>
<columns>create_time</columns>
<algorithm>partbymonth</algorithm>
</rule>
</tableRule>
<tableRule name="latest-month-calldate">
<rule>
<columns>calldate</columns>
<algorithm>latestMonth</algorithm>
</rule>
</tableRule>
<tableRule name="auto-sharding-rang-mod">
<rule>
<columns>id</columns>
<algorithm>rang-mod</algorithm>
</rule>
</tableRule>
<tableRule name="jch">
<rule>
<columns>id</columns>
<algorithm>jump-consistent-hash</algorithm>
</rule>
</tableRule>
<function name="murmur"
class="io.mycat.route.function.PartitionByMurmurHash">
<property name="seed">0</property><!-- 默认是0 -->
<property name="count">2</property><!-- 要分片的数据库节点数量,必须指定,否则没法分片 -->
<property name="virtualBucketTimes">160</property><!-- 一个实际的数据库节点被映射为这么多虚拟节点,默认是160倍,也就是虚拟节点数是物理节点数的160倍 -->
<!-- <property name="weightMapFile">weightMapFile</property> 节点的权重,没有指定权重的节点默认是1。以properties文件的格式填写,以从0开始到count-1的整数值也就是节点索引为key,以节点权重值为值。所有权重值必须是正整数,否则以1代替 -->
<!-- <property name="bucketMapPath">/etc/mycat/bucketMapPath</property>
用于测试时观察各物理节点与虚拟节点的分布情况,如果指定了这个属性,会把虚拟节点的murmur hash值与物理节点的映射按行输出到这个文件,没有默认值,如果不指定,就不会输出任何东西 -->
</function>
<function name="crc32slot"
class="io.mycat.route.function.PartitionByCRC32PreSlot">
</function>
<function name="hash-int"
class="io.mycat.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
</function>
<function name="rang-long"
class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
</function>
<function name="mod-long" class="io.mycat.route.function.PartitionByMod">
<!-- how many data nodes -->
<property name="count">2</property>
</function>
<function name="func1" class="io.mycat.route.function.PartitionByLong">
<property name="partitionCount">8</property>
<property name="partitionLength">128</property>
</function>
<function name="latestMonth"
class="io.mycat.route.function.LatestMonthPartion">
<property name="splitOneDay">24</property>
</function>
<function name="partbymonth"
class="io.mycat.route.function.PartitionByMonth">
<property name="dateFormat">yyyy-MM-dd</property>
<property name="sBeginDate">2015-01-01</property>
</function>
<function name="rang-mod" class="io.mycat.route.function.PartitionByRangeMod">
<property name="mapFile">partition-range-mod.txt</property>
</function>
<function name="jump-consistent-hash" class="io.mycat.route.function.PartitionByJumpConsistentHash">
<property name="totalBuckets">3</property>
</function>
</mycat:rule>
第三个:server.xml
设置mycat的登陆账号root和密码123456。mycat逻辑库db_store,db_user
<user name="root" defaultAccount="true">
<property name="password">123456</property>
<property name="schemas">db_store,db_user</property>
整个server.xml配置文件参考
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mycat:server SYSTEM "server.dtd">
<mycat:server xmlns:mycat="http://io.mycat/">
<system>
<property name="nonePasswordLogin">0</property> <!-- 0为需要密码登陆、1为不需要密码登陆 ,默认为0,设置为1则需要指定默认账户-->
<property name="useHandshakeV10">1</property>
<property name="useSqlStat">0</property> <!-- 1为开启实时统计、0为关闭 -->
<property name="useGlobleTableCheck">0</property> <!-- 1为开启全加班一致性检测、0为关闭 -->
<property name="sequnceHandlerType">2</property>
<!--<property name="sequnceHandlerPattern">(?:(\s*next\s+value\s+for\s*MYCATSEQ_(\w+))(,|\)|\s)*)+</property>-->
<!--必须带有MYCATSEQ_或者 mycatseq_进入序列匹配流程 注意MYCATSEQ_有空格的情况-->
<property name="sequnceHandlerPattern">(?:(\s*next\s+value\s+for\s*MYCATSEQ_(\w+))(,|\)|\s)*)+</property>
<property name="subqueryRelationshipCheck">false</property> <!-- 子查询中存在关联查询的情况下,检查关联字段中是否有分片字段 .默认 false -->
<!-- <property name="useCompression">1</property>--> <!--1为开启mysql压缩协议-->
<!-- <property name="fakeMySQLVersion">5.6.20</property>--> <!--设置模拟的MySQL版本号-->
<!-- <property name="processorBufferChunk">40960</property> -->
<!--
<property name="processors">1</property>
<property name="processorExecutor">32</property>
-->
<!--默认为type 0: DirectByteBufferPool | type 1 ByteBufferArena | type 2 NettyBufferPool -->
<property name="processorBufferPoolType">0</property>
<!--默认是65535 64K 用于sql解析时最大文本长度 -->
<!--<property name="maxStringLiteralLength">65535</property>-->
<!--<property name="sequnceHandlerType">0</property>-->
<!--<property name="backSocketNoDelay">1</property>-->
<!--<property name="frontSocketNoDelay">1</property>-->
<!--<property name="processorExecutor">16</property>-->
<!--
<property name="serverPort">8066</property> <property name="managerPort">9066</property>
<property name="idleTimeout">300000</property> <property name="bindIp">0.0.0.0</property>
<property name="frontWriteQueueSize">4096</property> <property name="processors">32</property> -->
<!--分布式事务开关,0为不过滤分布式事务,1为过滤分布式事务(如果分布式事务内只涉及全局表,则不过滤),2为不过滤分布式事务,但是记录分布式事务日志-->
<property name="handleDistributedTransactions">0</property>
<!--
off heap for merge/order/group/limit 1开启 0关闭
-->
<property name="useOffHeapForMerge">0</property>
<!--
单位为m
-->
<property name="memoryPageSize">64k</property>
<!--
单位为k
-->
<property name="spillsFileBufferSize">1k</property>
<property name="useStreamOutput">0</property>
<!--
单位为m
-->
<property name="systemReserveMemorySize">384m</property>
<!--是否采用zookeeper协调切换 -->
<property name="useZKSwitch">false</property>
<!-- XA Recovery Log日志路径 -->
<!--<property name="XARecoveryLogBaseDir">./</property>-->
<!-- XA Recovery Log日志名称 -->
<!--<property name="XARecoveryLogBaseName">tmlog</property>-->
<!--如果为 true的话 严格遵守隔离级别,不会在仅仅只有select语句的时候在事务中切换连接-->
<property name="strictTxIsolation">false</property>
<property name="useZKSwitch">true</property>
</system>
<!-- 全局SQL防火墙设置 -->
<!--白名单可以使用通配符%或着*-->
<!--例如<host host="127.0.0.*" user="root"/>-->
<!--例如<host host="127.0.*" user="root"/>-->
<!--例如<host host="127.*" user="root"/>-->
<!--例如<host host="1*7.*" user="root"/>-->
<!--这些配置情况下对于127.0.0.1都能以root账户登录-->
<!--
<firewall>
<whitehost>
<host host="1*7.0.0.*" user="root"/>
</whitehost>
<blacklist check="false">
</blacklist>
</firewall>
-->
<user name="root" defaultAccount="true">
<property name="password">123456</property>
<property name="schemas">db_store,db_user</property>
<!-- 表级 DML 权限设置 -->
<!--
<privileges check="false">
<schema name="TESTDB" dml="0110" >
<table name="tb01" dml="0000"></table>
<table name="tb02" dml="1111"></table>
</schema>
</privileges>
-->
</user>
</mycat:server>
配置好以上三个文件,mycat的搭建就完成了
进入mycat的bin目录启动mycat
./mycat start
进入mycat的logs目录可以查询到mycat的日志,conf目录下的log4j.xml可以设置mycat的日志级别,默认是info。如果要打印出select语句的日志,就要修改成debug
通过Navicat连接mycat,mycat端口号为8066
测试环节,所有操作都是连接在mycat库操作的,然后mycat会转发到真实数据库中
1.在users表上添加5条记录,测试一下分表分库是否成功
mycat users表的数据
142数据库users表的数据
144数据库users表的数据
可以看到,数据分片已经成功,偶数userID在142数据库,奇数在144数据库。查询数据时,mycat会自动匹配到对应的数据库
测试user_address ER表的数据是否与users表对应同一个DB节点
mycat user_address表的数据
142数据库user_address表的数据
144数据库user_address表的数据
以上数据与users表所有的节点数据是对应的,查询用户的地址信息就可以关联查询了,这就是ER表的作用
测试data_dictionary 全局表的数据是否在所有节点上都相同
插入五条数据,在mycat库、142数据库、144数据库上都是相同的
db_user数据库只作了分片操作,没有作mycat的主从配置,当某一个节点挂了,mycat的逻辑库就连不上了
db_store数据库测试,该数据库配置了主从复制,在mycat库中添加4条数据,看看所有节点的数据是否相同
3个数据库的数据都是相同的,这里就不一一帖出来了。主从复制配置成功。似类于全局表的功能。
在上面的schema.xml配置了读写分离
<dataHost name="db_storeHOST" maxCon="1000" minCon="10" balance="1"
writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
<heartbeat>select user()</heartbeat>
<!-- can have multi write hosts -->
<writeHost host="hostM1" url="192.168.79.142:3306" user="root" password="123456">
<!-- can have multi read hosts -->
<readHost host="hostS1" url="192.168.79.144:3306" user="root" password="123456" />
</writeHost>
</dataHost>
mycat配置了142是主机(writeHost),144是从机(readHost)。142可以读和写,144只能读。 默认读操作是在144上执行的,当144挂了之后,读操作会到142执行。但如果142挂了,读和写操作都不能执行了。
相当于mycat配置的主机(writeHost)必须活着
mycat在java的整合的方式与mysql的方式是一样的,只要引入mysql和jdbc的包,只是端口改成8066