接上篇抽丝剥茧okhttp(三) https://www.jianshu.com/p/cf59397dce1f
下面是极简版的okhttp请求网络的流程图,之前分析过了Response、Request这两个涉及http本身的协议的封装。那么如何宏观上看整个请求流程呢?
1 OkHttpClient负责把这些部件和配置装配起来
2 用Call对象发出请求,
3 在发送和接收过程中通过很多拦截器处理,
4 之后我们接得了response对象,整个网络请求流程完成。
一共四步,联想实际的网络请求不难理解。
那么这四步具体是如何实现的呢?我们一步一步的来抽丝剥茧。
OkhttpClient
OkhttpClient充当的是一个客户端的角色,负责收集请求,配置信息,创建用于实际发出请求的Call。下面根据我们实际项目顺序了解一下OkhttpClient的运行机制。
1 .OkhttpClient的创建
public OkHttpClient() {
this(new Builder());
}
OkHttpClient(Builder builder) {
this.dispatcher = builder.dispatcher;
this.proxy = builder.proxy;
this.protocols = builder.protocols;
this.connectionSpecs = builder.connectionSpecs;
this.interceptors = Util.immutableList(builder.interceptors);
this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
this.eventListenerFactory = builder.eventListenerFactory;
this.proxySelector = builder.proxySelector;
this.cookieJar = builder.cookieJar;
this.cache = builder.cache;
this.internalCache = builder.internalCache;
this.socketFactory = builder.socketFactory;
boolean isTLS = false;
for (ConnectionSpec spec : connectionSpecs) {
isTLS = isTLS || spec.isTls();
}
if (builder.sslSocketFactory != null || !isTLS) {
this.sslSocketFactory = builder.sslSocketFactory;
this.certificateChainCleaner = builder.certificateChainCleaner;
} else {
X509TrustManager trustManager = systemDefaultTrustManager();
this.sslSocketFactory = systemDefaultSslSocketFactory(trustManager);
this.certificateChainCleaner = CertificateChainCleaner.get(trustManager);
}
this.hostnameVerifier = builder.hostnameVerifier;
this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
certificateChainCleaner);
this.proxyAuthenticator = builder.proxyAuthenticator;
this.authenticator = builder.authenticator;
this.connectionPool = builder.connectionPool;
this.dns = builder.dns;
this.followSslRedirects = builder.followSslRedirects;
this.followRedirects = builder.followRedirects;
this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
this.connectTimeout = builder.connectTimeout;
this.readTimeout = builder.readTimeout;
this.writeTimeout = builder.writeTimeout;
this.pingInterval = builder.pingInterval;
if (interceptors.contains(null)) {
throw new IllegalStateException("Null interceptor: " + interceptors);
}
if (networkInterceptors.contains(null)) {
throw new IllegalStateException("Null network interceptor: " + networkInterceptors);
}
}
OkhttpClient的创建也builder模式,但暴露给外部的是一new出来的,内部调用第二个采用builder构造方法。这样做是为了初始化builder中默认的重要参数,避免用户调用的时候这么多的参数用户很大可能上会配错一些东西。这样简化了操作。
我们如何发起请求,获得response呢
Request request = new Request.Builder()
.url(url)
.build();
Response response = client.newCall(request).execute();
OkhttpClient实现了Call.Factory的newCall(),这样为我们生产出来一个新的随时可以发起网络请求的Call对象;
/**
* Prepares the {@code request} to be executed at some point in the future.
*/
@Override
public Call newCall(Request request) {
return RealCall.newRealCall(this, request, false /* for web socket */);
}
可以看到他返回的是一个用RealCall从创建出来的而且是RealCall对象。
static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
// Safely publish the Call instance to the EventListener.
RealCall call = new RealCall(client, originalRequest, forWebSocket);
call.eventListener = client.eventListenerFactory().create(call);
return call;
}
这个RealCall对象正是对网络请求的真正发起者,起重大作用。RealCall实现了Call接口,我们看Call的定义。
public interface Call extends Cloneable {
//返回原始的Request
Request request();
//立即执行网络请求
Response execute() throws IOException;
//在将来的某一时刻发起请求
void enqueue(Callback responseCallback);
//判断是否被执行了
boolean isExecuted();
//判断是否被取消了
boolean isCanceled();
//创建出来一个新的Call对象
Call clone();
interface Factory {
Call newCall(Request request);
}
}
RealCall中复写的这些方法全权的执行了网络请求的工作。所以我们绕了这么大弯子终于看到在哪进行的网络请求了。
@Override public Response execute() throws IOException {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
try {
client.dispatcher().executed(this);
Response result = getResponseWithInterceptorChain();
if (result == null) throw new IOException("Canceled");
return result;
} catch (IOException e) {
eventListener.callFailed(this, e);
throw e;
} finally {
client.dispatcher().finished(this);
}
}
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
execute 和 enqueue中分别调用了
client.dispatcher().finished(this);;和 client.dispatcher().enqueue(new AsyncCall(responseCallback));
一个同步一个异步的。用dispatcher放到一个队列中进行分发运行,对于enqueue因为AsyncCall实现了Runnable接口,在dispatcher中的的线程池运行队列里的Runnable对象,执行executorService().execute(call);所以最后的网络请求还在这个AsyncCall对象对于runnable的实现中。他们共同的会调用
Response response = getResponseWithInterceptorChain();
获得了Response对象。那么getResponseWithInterceptorChain();又做了什么。
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
originalRequest, this, eventListener, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
return chain.proceed(originalRequest);
}
这里添加了okhttp默认的几个拦截器,并进入chain.proceed(originalRequest);至此进入了一大堆拦截器各种拦截最后返回response的模式,关于拦截器我们以后再说,现在先过。经过层层拦截器我们终于拿到了最终的响应对象。如此推演我们可以推断出我们真正的请求应在最后一个拦截器中。我们看一下:就是那个CallServerInterceptor
/** This is the last interceptor in the chain. It makes a network call to the server. */
public final class CallServerInterceptor implements Interceptor {
private final boolean forWebSocket;
public CallServerInterceptor(boolean forWebSocket) {
this.forWebSocket = forWebSocket;
}
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
realChain.eventListener().requestHeadersStart(realChain.call());
httpCodec.writeRequestHeaders(request);
realChain.eventListener().requestHeadersEnd(realChain.call(), request);
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
// If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
// Continue" response before transmitting the request body. If we don't get that, return
// what we did get (such as a 4xx response) without ever transmitting the request body.
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
httpCodec.flushRequest();
realChain.eventListener().responseHeadersStart(realChain.call());
responseBuilder = httpCodec.readResponseHeaders(true);
}
if (responseBuilder == null) {
// Write the request body if the "Expect: 100-continue" expectation was met.
realChain.eventListener().requestBodyStart(realChain.call());
long contentLength = request.body().contentLength();
CountingSink requestBodyOut =
new CountingSink(httpCodec.createRequestBody(request, contentLength));
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
realChain.eventListener()
.requestBodyEnd(realChain.call(), requestBodyOut.successfulCount);
} else if (!connection.isMultiplexed()) {
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
// from being reused. Otherwise we're still obligated to transmit the request body to
// leave the connection in a consistent state.
streamAllocation.noNewStreams();
}
}
httpCodec.finishRequest();
if (responseBuilder == null) {
realChain.eventListener().responseHeadersStart(realChain.call());
responseBuilder = httpCodec.readResponseHeaders(false);
}
Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
int code = response.code();
if (code == 100) {
// server sent a 100-continue even though we did not request one.
// try again to read the actual response
responseBuilder = httpCodec.readResponseHeaders(false);
response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
code = response.code();
}
realChain.eventListener()
.responseHeadersEnd(realChain.call(), response);
if (forWebSocket && code == 101) {
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
}
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
streamAllocation.noNewStreams();
}
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
}
return response;
}
static final class CountingSink extends ForwardingSink {
long successfulCount;
CountingSink(Sink delegate) {
super(delegate);
}
@Override public void write(Buffer source, long byteCount) throws IOException {
super.write(source, byteCount);
successfulCount += byteCount;
}
}
}
果不其然 我们看眼注释就知道了:This is the last interceptor in the chain. It makes a network call to the server. */
也验证了我们之前的猜测。intercept方法中确确实实的执行了网络请求,但在okhttp3.internal包中的类涉及底层更多一些,本人目前精力有限,只能分析到这层,但目前看来对于轮子我们了解了差不多了,大件都拆了,小件拆了也不一定能用的到,所以就到这层。
这里返回的 response就是我最终可以使用的response了。
这个response我们一层一层返回上层 我们在哪能拿到还记得么?那就是execute()同步请求中直接返回,enqueue中的callback中
@Override public Response execute() throws IOException {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
try {
client.dispatcher().executed(this);
Response result = getResponseWithInterceptorChain();
if (result == null) throw new IOException("Canceled");
return result;
} catch (IOException e) {
eventListener.callFailed(this, e);
throw e;
} finally {
client.dispatcher().finished(this);
}
}
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
eventListener.callStart(this);
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
public interface Callback {
/**
* Called when the request could not be executed due to cancellation, a connectivity problem or
* timeout. Because networks can fail during an exchange, it is possible that the remote server
* accepted the request before the failure.
*/
void onFailure(Call call, IOException e);
/**
* Called when the HTTP response was successfully returned by the remote server. The callback may
* proceed to read the response body with {@link Response#body}. The response is still live until
* its response body is {@linkplain ResponseBody closed}. The recipient of the callback may
* consume the response body on another thread.
*
* <p>Note that transport-layer success (receiving a HTTP response code, headers and body) does
* not necessarily indicate application-layer success: {@code response} may still indicate an
* unhappy HTTP response code like 404 or 500.
*/
void onResponse(Call call, Response response) throws IOException;
}
这样开发者朋友们就拿到可请求之后的Response了。这样我们终于看到okhttp官网上的那几段示例代码都做了什么事情了;我顺便贴出来,顺便也回味一下:
Examples
GET A URL
This program downloads a URL and print its contents as a string. Full source.
OkHttpClient client = new OkHttpClient();
String run(String url) throws IOException {
Request request = new Request.Builder()
.url(url)
.build();
Response response = client.newCall(request).execute();
return response.body().string();
}
POST TO A SERVER
This program posts data to a service. Full source.
public static final MediaType JSON
= MediaType.parse("application/json; charset=utf-8");
OkHttpClient client = new OkHttpClient();
String post(String url, String json) throws IOException {
RequestBody body = RequestBody.create(JSON, json);
Request request = new Request.Builder()
.url(url)
.post(body)
.build();
Response response = client.newCall(request).execute();
return response.body().string();
}
总结
总结一下,整个网络请求过程中okhttpclient的角色就是准备材料,Call对象负责发起,但发起的意义在于把请求放到队列里执行,在此之后一直到最后请求成功这中间又精力了若干的拦截器。正是这些拦截器实现了更多更具有拓展性的工作,默认添加进去的拦截器如下:
List<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
从字面意义上来看包含了众多功能,而且我们后期还可以自己的定制自己的interceptor添加到这里面实现各式各样的功能需求,所以interceptor的设计师okhttp的绝妙之笔。关于interceptor我们后续有机会再行解析。